Show simple item record

dc.contributor.authorRinnerbauer, V.
dc.contributor.authorLausecker, E.
dc.contributor.authorSchäffler, F.
dc.contributor.authorReininger, P.
dc.contributor.authorStrasser, G.
dc.contributor.authorGeil, R. D.
dc.contributor.authorJoannopoulos, John
dc.contributor.authorSoljacic, Marin
dc.contributor.authorCelanovic, Ivan L.
dc.date.accessioned2017-05-11T13:11:05Z
dc.date.available2017-05-11T13:11:05Z
dc.date.issued2015-08
dc.date.submitted2015-07
dc.identifier.issn2334-2536
dc.identifier.urihttp://hdl.handle.net/1721.1/108801
dc.description.abstractA two-dimensional superlattice metallic photonic crystal (PhC) and its fabrication by nanoimprint lithography on tantalum substrates are presented. The superior tailoring capacity of the superlattice PhC geometry is used to achieve spectrally selective solar absorption optimized for high-temperature and high-efficiency solar-energy-conversion applications. The scalable fabrication route by nanoimprint lithography allows for a high-throughput and high-resolution replication of this complex pattern over large areas. Despite the high fill factor, the pattern of polygonal cavities is accurately replicated into a resist that hardens under ultraviolet radiation over an area of 10  mm². In this way, cavities of 905 nm and 340 nm width are achieved with a period of 1 μm. After pattern transfer into tantalum via a deep reactive ion-etching process, the achieved cavities are 2.2 μm deep, separated by 85–95 nm wide ridges with vertical sidewalls. The room-temperature reflectance spectra of the fabricated samples show excellent agreement with simulated results, with a high spectral absorptance approaching blackbody absorption in the range from 300 to 1900 nm and a steep cutoff. The calculated solar absorptivity of this superlattice PhC is 96% and its thermal transfer efficiency is 82.8% at an operating temperature of 1500 K and an irradiance of 1000  kW/m².en_US
dc.description.sponsorshipUnited States. Army Research Office (W911NF-13-D-0001)en_US
dc.description.sponsorshipUnited States. Department of Energy (DE-SC0001299)en_US
dc.language.isoen_US
dc.publisherOptical Society of Americaen_US
dc.relation.isversionofhttp://dx.doi.org/10.1364/optica.2.000743en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleNanoimprinted superlattice metallic photonic crystal as ultraselective solar absorberen_US
dc.typeArticleen_US
dc.identifier.citationRinnerbauer, V.; Lausecker, E.; Schäffler, F.; Reininger, P.; Strasser, G.; Geil, R. D.; Joannopoulos, J. D.; Soljačić, M. and Celanovic, I. "Nanoimprinted superlattice metallic photonic crystal as ultraselective solar absorber." Optica 2, no. 8 (August 2015): 743-746.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorJoannopoulos, John
dc.contributor.mitauthorSoljacic, Marin
dc.contributor.mitauthorCelanovic, Ivan L.
dc.relation.journalOpticaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRinnerbauer, V.; Lausecker, E.; Schäffler, F.; Reininger, P.; Strasser, G.; Geil, R. D.; Joannopoulos, J. D.; Soljačić, M.; Celanovic, I.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7244-3682
dc.identifier.orcidhttps://orcid.org/0000-0002-7184-5831
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record