Show simple item record

dc.contributor.authorMathias, S.
dc.contributor.authorEich, S.
dc.contributor.authorUrbancic, J.
dc.contributor.authorMichael, S.
dc.contributor.authorCarr, A. V.
dc.contributor.authorEmmerich, S.
dc.contributor.authorStange, A.
dc.contributor.authorPopmintchev, T.
dc.contributor.authorWiesenmayer, M.
dc.contributor.authorRuffing, A.
dc.contributor.authorJakobs, S.
dc.contributor.authorHellmann, S.
dc.contributor.authorMatyba, P.
dc.contributor.authorChen, C.
dc.contributor.authorKipp, L.
dc.contributor.authorBauer, M.
dc.contributor.authorKapteyn, H. C.
dc.contributor.authorSchneider, H. C.
dc.contributor.authorRossnagel, K.
dc.contributor.authorMurnane, M. M.
dc.contributor.authorAeschlimann, M.
dc.contributor.authorRohwer, Timm
dc.date.accessioned2017-05-12T14:00:37Z
dc.date.available2017-05-12T14:00:37Z
dc.date.issued2016-10
dc.date.submitted2015-07
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/109036
dc.description.abstractCapturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe[subscript 2], our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation.en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms12902en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleSelf-amplified photo-induced gap quenching in a correlated electron materialen_US
dc.typeArticleen_US
dc.identifier.citationMathias, S. et al. “Self-Amplified Photo-Induced Gap Quenching in a Correlated Electron Material.” Nature Communications 7 (2016): 12902. © 2016 Macmillan Publishers Limiteden_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentFrancis Bitter Magnet Laboratory (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorRohwer, Timm
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMathias, S.; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S.; Stange, A.; Popmintchev, T.; Rohwer, T.; Wiesenmayer, M.; Ruffing, A.; Jakobs, S.; Hellmann, S.; Matyba, P.; Chen, C.; Kipp, L.; Bauer, M.; Kapteyn, H. C.; Schneider, H. C.; Rossnagel, K.; Murnane, M. M.; Aeschlimann, M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1772-4481
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record