MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

System-Wide Adaptations of Desulfovibrio alaskensis G20 to Phosphate-Limited Conditions

Author(s)
Schubotz, Florence; Kuehl, Jennifer V.; Carlson, Hans K.; Watson, Nicki; Arkin, Adam P.; Deutschbauer, Adam M.; Bosak, Tanja; De Santiago Torio, Ana; El Daye, Mirna; Summons, Roger E; ... Show more Show less
Thumbnail
DownloadBosak-2016-System-Wide Adaptations of Desulfov.pdf (3.659Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
CC0 1.0 Universal (CC0 1.0) Public Domain Dedication https://creativecommons.org/publicdomain/zero/1.0/
Metadata
Show full item record
Abstract
The prevalence of lipids devoid of phosphorus suggests that the availability of phosphorus limits microbial growth and activity in many anoxic, stratified environments. To better understand the response of anaerobic bacteria to phosphate limitation and starvation, this study combines microscopic and lipid analyses with the measurements of fitness of pooled barcoded transposon mutants of the model sulfate reducing bacterium Desulfovibrio alaskensis G20. Phosphate-limited G20 has lower growth rates and replaces more than 90% of its membrane phospholipids by a mixture of monoglycosyl diacylglycerol (MGDG), glycuronic acid diacylglycerol (GADG) and ornithine lipids, lacks polyphosphate granules, and synthesizes other cellular inclusions. Analyses of pooled and individual mutants reveal the importance of the high-affinity phosphate transport system (the Pst system), PhoR, and glycolipid and ornithine lipid synthases during phosphate limitation. The phosphate-dependent synthesis of MGDG in G20 and the widespread occurrence of the MGDG/GADG synthase among sulfate reducing ∂-Proteobacteria implicate these microbes in the production of abundant MGDG in anaerobic environments where the concentrations of phosphate are lower than 10 μM. Numerous predicted changes in the composition of the cell envelope and systems involved in transport, maintenance of cytoplasmic redox potential, central metabolism and regulatory pathways also suggest an impact of phosphate limitation on the susceptibility of sulfate reducing bacteria to other anthropogenic or environmental stresses.
Date issued
2016-12
URI
http://hdl.handle.net/1721.1/109084
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
PLOS ONE
Publisher
Public Library of Science
Citation
Bosak, Tanja; Schubotz, Florence; de Santiago-Torio, Ana; Kuehl, Jennifer V.; Carlson, Hans K.; Watson, Nicki; Daye, Mirna; Summons, Roger E.; Arkin, Adam P. and Deutschbauer, Adam M. “System-Wide Adaptations of Desulfovibrio Alaskensis G20 to Phosphate-Limited Conditions.” Edited by Marie-Joelle Virolle. PLOS ONE 11, no. 12 (December 2016): e0168719.
Version: Final published version
ISSN
1932-6203

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.