MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatiotemporal Dynamics of Dexmedetomidine-Induced Electroencephalogram Oscillations

Author(s)
Akeju, Oluwaseun; Vazquez, Rafael; Rhee, James; Pavone, Kara J.; Hobbs, Lauren E.; Purdon, Patrick L.; Kim, Seong-Eun; Brown, Emery Neal; ... Show more Show less
Thumbnail
DownloadAkeju-2016-Spatiotemporal Dynamics of Dexmedet.pdf (11.69Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
An improved understanding of the neural correlates of altered arousal states is fundamental for precise brain state targeting in clinical settings. More specifically, electroencephalogram recordings are now increasingly being used to relate drug-specific oscillatory dynamics to clinically desired altered arousal states. Dexmedetomidine is an anesthetic adjunct typically administered in operating rooms and intensive care units to produce and maintain a sedative brain state. However, a high-density electroencephalogram characterization of the neural correlates of the dexmedetomidine-induced altered arousal state has not been previously accomplished. Therefore, we administered dexmedetomidine (1mcg/kg bolus over 10 minutes, followed by 0.7mcg/kg/hr over 50 minutes) and recorded high-density electroencephalogram signals in healthy volunteers, 18–36 years old (n = 8). We analyzed the data with multitaper spectral and global coherence methods. We found that dexmedetomidine was associated with increased slow-delta oscillations across the entire scalp, increased theta oscillations in occipital regions, increased spindle oscillations in frontal regions, and decreased beta oscillations across the entire scalp. The theta and spindle oscillations were globally coherent. During recovery from this state, these electroencephalogram signatures reverted towards baseline signatures. We report that dexmedetomidine-induced electroencephalogram signatures more closely approximate the human sleep onset process than previously appreciated. We suggest that these signatures may be targeted by real time visualization of the electroencephalogram or spectrogram in clinical settings. Additionally, these signatures may aid the development of control systems for principled neurophysiological based brain-state targeting.
Date issued
2016-10
URI
http://hdl.handle.net/1721.1/109138
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
PLOS ONE
Publisher
Public Library of Science
Citation
Akeju, Oluwaseun; Kim, Seong-Eun; Vazquez, Rafael; Rhee, James; Pavone, Kara J.; Hobbs, Lauren E.; Purdon, Patrick L. and Brown, Emery N. “Spatiotemporal Dynamics of Dexmedetomidine-Induced Electroencephalogram Oscillations.” Edited by Nader Pouratian. PLOS ONE 11, no. 10 (October 2016): e0163431. © 2016 Akeju et al
Version: Final published version
ISSN
1932-6203

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.