MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Critical Timescales for Burrowing in Undersea Substrates via Localized Fluidization, Demonstrated by RoboClam: A Robot Inspired by Atlantic Razor Clams

Author(s)
Winter, Amos G.; Deits, Robin Lloyd Henderson; Dorsch, Daniel S.
Thumbnail
DownloadCritical timescales.pdf (4.001Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The Atlantic razor clam (Ensis directus) burrows into underwater soil by using motions of its shell to locally fluidize the surrounding substrate. The energy associated with movement through fluidized soil — characterized by a depth-independent density and viscosity — scales linearly with depth. In contrast, moving through static soil requires energy that scales with depth squared. For E. directus, this translates to a 10X reduction in the energy required to reach observed burrow depths. For engineers, localized fluidization offers a mechanically simple and purely kinematic method to dramatically reduce burrowing energy. This concept is demonstrated with RoboClam, an E. directus-inspired robot. Using a genetic algorithm to generate digging kinematics, RoboClam has achieved localized fluidization and burrowing performance comparable to that of the animal, with a linear energy-depth relationship. In this paper, we present the critical timescales and associated kinematics necessary for achieving localized fluidization, which are calculated from soil parameters and validated via RoboClam and E. directus testing.
Date issued
2013-08
URI
http://hdl.handle.net/1721.1/109256
Department
MIT-SUTD Collaboration Office; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Physics
Journal
Volume 6A: 37th Mechanisms and Robotics Conference
Publisher
American Society of Mechanical Engineers
Citation
Winter, Amos G., Robin L. H. Deits, and Daniel S. Dorsch. “Critical Timescales for Burrowing in Undersea Substrates via Localized Fluidization, Demonstrated by RoboClam: A Robot Inspired by Atlantic Razor Clams.” Volume 6A: 37th Mechanisms and Robotics Conference (August 4, 2013).
Version: Final published version
ISBN
978-0-7918-5593-5

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.