Show simple item record

dc.contributor.authorZhang, Chongjie
dc.contributor.authorShah, Julie A
dc.date.accessioned2017-05-24T13:21:03Z
dc.date.available2017-05-24T13:21:03Z
dc.date.issued2014-12
dc.date.submitted2014-12
dc.identifier.urihttp://hdl.handle.net/1721.1/109304
dc.description.abstractWe define a fairness solution criterion for multi-agent decision-making problems, where agents have local interests. This new criterion aims to maximize the worst performance of agents with consideration on the overall performance. We develop a simple linear programming approach and a more scalable game-theoretic approach for computing an optimal fairness policy. This game-theoretic approach formulates this fairness optimization as a two-player, zero-sum game and employs an iterative algorithm for finding a Nash equilibrium, corresponding to an optimal fairness policy. We scale up this approach by exploiting problem structure and value function approximation. Our experiments on resource allocation problems show that this fairness criterion provides a more favorable solution than the utilitarian criterion, and that our game-theoretic approach is significantly faster than linear programming.en_US
dc.language.isoen_US
dc.publisherNeural Information Processing Systems Foundation Inc.en_US
dc.relation.isversionofhttps://papers.nips.cc/paper/5588-fairness-in-multi-agent-sequential-decision-makingen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceNIPSen_US
dc.titleFairness in Multi-Agent Sequential Decision-Makingen_US
dc.typeArticleen_US
dc.identifier.citationZhang, Chongjie and Shah, Julie A. "Fairness in Multi-Agent Sequential Decision-Making." Advances in Neural Information Processing Systems 27 (NIPS 2014), December 8-13 2014 Palais des Congrès de Montréal, Montréal, Canada, Neural Information Processing Systems Foundation Inc., December 2014 © 2014 Neural Information Processing Systems Foundation Inc.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.mitauthorZhang, Chongjie
dc.contributor.mitauthorShah, Julie A
dc.relation.journalAdvances in Neural Information Processing Systems 27 (NIPS 2014)en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsZhang, Chongjie; Shah, Julie A.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5545-1691
dc.identifier.orcidhttps://orcid.org/0000-0003-1338-8107
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record