MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Precession of Mercury’s Perihelion from Ranging to the MESSENGER Spacecraft

Author(s)
Park, Ryan S.; Folkner, William M.; Konopliv, Alexander S.; Williams, James G.; Smith, David E.; Zuber, Maria; ... Show more Show less
Thumbnail
DownloadPark-2017-Precession of Mercury's Perihelion f.pdf (1.372Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The perihelion of Mercury's orbit precesses due to perturbations from other solar system bodies, solar quadrupole moment (J [subscript 2]), and relativistic gravitational effects that are proportional to linear combinations of the parametrized post-Newtonian parameters β and γ. The orbits and masses of the solar system bodies are quite well known, and thus the uncertainty in recovering the precession rate of Mercury's perihelion is dominated by the uncertainties in the parameters J [subscript 2], β, and γ. Separating the effects due to these parameters is challenging since the secular precession rate has a linear dependence on each parameter. Here we use an analysis of radiometric range measurements to the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft in orbit about Mercury to estimate the precession of Mercury's perihelion. We show that the MESSENGER ranging data allow us to measure not only the secular precession rate of Mercury's perihelion with substantially improved accuracy, but also the periodic perturbation in the argument of perihelion sensitive to β and γ. When combined with the γ estimate from a Shapiro delay experiment from the Cassini mission, we can decouple the effects due to β and J [subscript 2] and estimate both parameters, yielding (β -1)=(-2.7 ± 3.9) x 10[superscript -5] and J [subscript 2] = (2.25 ± 0.09) × 10[superscript −7]. We also estimate the total precession rate of Mercury's perihelion as 575.3100 ± 0.0015''/century and provide estimated contributions and uncertainties due to various perturbing effects.
Date issued
2017-02
URI
http://hdl.handle.net/1721.1/109312
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
The Astronomical Journal
Publisher
IOP Publishing
Citation
Park, Ryan S. et al. “Precession of Mercury’s Perihelion from Ranging to the MESSENGER Spacecraft.” The Astronomical Journal 153.3 (2017): 121. © 2017 The American Astronomical Society
Version: Final published version
ISSN
1538-3881

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.