MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels

Author(s)
Lee, W.Y.; Hanna, Jeffrey; Alotaibi, Waleed Lafi; Ghoniem, Ahmed F
Thumbnail
DownloadGhoniem_Fundamentals of.pdf (4.832Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Abstract High fuel flexibility of solid-oxide fuel cells (SOFCs) affords the possibility to use relatively cheap, safe, and readily available hydrocarbon (e.g., CH₄) or coal syngas (i.e., CO-H₂ mixtures) fuels. Utilization of such fuels would greatly lower fuel cost and increase the feasibility of SOFC commercialization, especially for near-term adoption in anticipation of the long-awaited so-called “hydrogen economy”. Current SOFC technology has shown good performance with a wide range of hydrocarbon and syngas fuels, but there are still significant challenges for practical application. In this paper, the basic operating principles, state-of-the-art performance benchmarks, and SOFC-relevant materials are summarized. More in-depth reviews on those topics can be found in Kee and co-workers [Combust Sci and Tech 2008; 180:1207–44 and Proc Combust Inst 2005; 30:2379–404] and McIntosh and Gorte [Chem Rev 2004; 104:4845–65]. The focus of this review is on the fundamentals and development of detailed electro- and thermal (or simply, electrothermal) chemistry within the SOFC anode, including electrochemical oxidation mechanisms for H₂, CO, CH₄, and carbon, as well as the effects of carbon deposition and sulfur poisoning. The interdependence of heterogeneous chemistry, charge-transfer processes, and transport are discussed in the context of SOFC membrane-electrode assembly modeling.
Date issued
2013-10
URI
http://hdl.handle.net/1721.1/109313
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Progress in Energy and Combustion Science
Publisher
Elsevier
Citation
Hanna, J.; Lee, W.Y.; Shi, Y. and Ghoniem, A.F. "Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels." Progress in Energy and Combustion Science 40 (February 2014): 74-111 © 2013 Elsevier Ltd
Version: Author's final manuscript
ISSN
0360-1285

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.