MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multifidelity Information Fusion Algorithms for High-Dimensional Systems and Massive Data sets

Author(s)
Venturi, Daniele; Perdikaris, Paris; Karniadakis, George E
Thumbnail
DownloadMultifidelity information.pdf (7.027Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We develop a framework for multifidelity information fusion and predictive inference in high-dimensional input spaces and in the presence of massive data sets. Hence, we tackle simultaneously the “big N" problem for big data and the curse of dimensionality in multivariate parametric problems. The proposed methodology establishes a new paradigm for constructing response surfaces of high-dimensional stochastic dynamical systems, simultaneously accounting for multifidelity in physical models as well as multifidelity in probability space. Scaling to high dimensions is achieved by data-driven dimensionality reduction techniques based on hierarchical functional decompositions and a graph-theoretic approach for encoding custom autocorrelation structure in Gaussian process priors. Multifidelity information fusion is facilitated through stochastic autoregressive schemes and frequency-domain machine learning algorithms that scale linearly with the data. Taking together these new developments leads to linear complexity algorithms as demonstrated in benchmark problems involving deterministic and stochastic fields in up to 10⁵ input dimensions and 10⁵ training points on a standard desktop computer.
Date issued
2016-07
URI
http://hdl.handle.net/1721.1/109316
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
SIAM Journal on Scientific Computing
Publisher
Society for Industrial and Applied Mathematics
Citation
Perdikaris, Paris; Venturi, Daniele and Karniadakis, George Em. “Multifidelity Information Fusion Algorithms for High-Dimensional Systems and Massive Data Sets.” SIAM Journal on Scientific Computing 38, no. 4 (January 2016): B521–B538 © 2016 Society for Industrial and Applied Mathematics
Version: Final published version
ISSN
1064-8275
1095-7197

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.