Show simple item record

dc.contributor.authorAhn, Hyung-il
dc.contributor.authorPicard, Rosalind W.
dc.date.accessioned2017-05-24T18:57:54Z
dc.date.available2017-05-24T18:57:54Z
dc.date.issued2014-07
dc.identifier.urihttp://hdl.handle.net/1721.1/109317
dc.description.abstractIn this paper we computationally examine how subjective experience may help or harm the decision maker's learning under uncertain outcomes, frames and their interactions. To model subjective experience, we propose the "experienced-utility function" based on a prospect theory (PT)-based parameterized subjective value function. Our analysis and simulations of two-armed bandit tasks present that the task domain (underlying outcome distributions) and framing (reference point selection) influence experienced utilities and in turn, the "subjective discriminability" of choices under uncertainty. Experiments demonstrate that subjective discriminability improves on objective discriminability by the use of the experienced-utility function with appropriate framing for a given task domain, and that bigger subjective discriminability leads to more optimal decisions in learning under uncertainty.en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Media Laboratoryen_US
dc.language.isoen_US
dc.publisherAAAIen_US
dc.relation.isversionofhttp://dl.acm.org/citation.cfm?id=2893873.2893925en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleModeling Subjective Experience-Based Learning under Uncertainty and Framesen_US
dc.typeArticleen_US
dc.identifier.citationAhn, Hyung-il, and Rosalind W. Picard. “Modeling Subjective Experience-Based Learning under Uncertainty and Frames.” Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence 2014: 329–335.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.mitauthorPicard, Rosalind W.
dc.relation.journalProceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsAhn, Hyung-il; Picard, Rosalind Wen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5661-0022
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record