Show simple item record

dc.contributor.authorTruong, Quoc T.
dc.contributor.authorSieber, Michael
dc.contributor.authorKleingartner, Justin Alan
dc.contributor.authorSrinivasan, Siddarth
dc.contributor.authorCohen, Robert E
dc.contributor.authorMcKinley, Gareth H
dc.date.accessioned2017-05-25T18:52:23Z
dc.date.available2017-05-25T18:52:23Z
dc.date.issued2015-12
dc.date.submitted2015-08
dc.identifier.issn0743-7463
dc.identifier.issn1520-5827
dc.identifier.urihttp://hdl.handle.net/1721.1/109349
dc.description.abstractCommercially available woven fabrics (e.g., nylon- or PET-based fabrics) possess inherently re-entrant textures in the form of cylindrical yarns and fibers. We analyze the liquid repellency of woven and nanotextured oleophobic fabrics using a nested model with n levels of hierarchy that is constructed from modular units of cylindrical and spherical building blocks. At each level of hierarchy, the density of the topographical features is captured using a dimensionless textural parameter D[subscript n][superscript *]. For a plain-woven mesh comprised of chemically treated fiber bundles (n = 2), the tight packing of individual fibers in each bundle (D[subscript 2][superscript *] ≈ 1) imposes a geometric constraint on the maximum oleophobicity that can be achieved solely by modifying the surface energy of the coating. For liquid droplets contacting such tightly bundled fabrics with modified surface energies, we show that this model predicts a lower bound on the equilibrium contact angle of θE ≈ 57° below which the Cassie–Baxter to Wenzel wetting transition occurs spontaneously, and this is validated experimentally. We demonstrate how the introduction of an additional higher order micro-/nanotexture onto the fibers (n = 3) is necessary to overcome this limit and create more robustly nonwetting fabrics. Finally, we show a simple experimental realization of the enhanced oleophobicity of fabrics by depositing spherical microbeads of poly(methyl methacrylate)/fluorodecyl polyhedral oligomeric silsesquioxane (fluorodecyl POSS) onto the fibers of a commercial woven nylon fabric.en_US
dc.description.sponsorshipUnited States. Army Research Office (W911NF-13-D-0001)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.langmuir.5b03000en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT Web Domainen_US
dc.titleDesigning Robust Hierarchically Textured Oleophobic Fabricsen_US
dc.typeArticleen_US
dc.identifier.citationKleingartner, Justin A.; Srinivasan, Siddarth; Truong, Quoc T.; Sieber, Michael; Cohen, Robert E. and McKinley, Gareth H. “Designing Robust Hierarchically Textured Oleophobic Fabrics.” Langmuir 31, no. 48 (December 2015): 13201–13213 © 2015 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorKleingartner, Justin Alan
dc.contributor.mitauthorSrinivasan, Siddarth
dc.contributor.mitauthorCohen, Robert E
dc.contributor.mitauthorMcKinley, Gareth H
dc.relation.journalLangmuiren_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKleingartner, Justin A.; Srinivasan, Siddarth; Truong, Quoc T.; Sieber, Michael; Cohen, Robert E.; McKinley, Gareth H.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3873-2472
dc.identifier.orcidhttps://orcid.org/0000-0003-4591-6090
dc.identifier.orcidhttps://orcid.org/0000-0003-1085-7692
dc.identifier.orcidhttps://orcid.org/0000-0001-8323-2779
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record