MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generalized Interference Alignment—Part I: Theoretical Framework

Author(s)
Lau, Vincent K. N.; Ruan, Liangzhong; Win, Moe Z
Thumbnail
DownloadWin_Generalized interference I.pdf (801.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Interference alignment (IA) has attracted enormous research interest as it achieves optimal capacity scaling with respect to signal to noise ratio on interference networks. IA has also recently emerged as an effective tool in engineering interference for secrecy protection on wireless wiretap networks. However, despite the numerous works dedicated to IA, two of its fundamental issues, i.e., feasibility conditions and transceiver design, are not completely addressed in the literature. In this two part paper, a generalized interference alignment (GIA) technique is proposed to enhance the IA's capability in secrecy protection. A theoretical framework is established to analyze the two fundamental issues of GIA in Part I and then the performance of GIA in large-scale stochastic networks is characterized to illustrate how GIA benefits secrecy protection in Part II. The theoretical framework for GIA adopts methodologies from algebraic geometry, determines the necessary and sufficient feasibility conditions of GIA, and generates a set of algorithms for solving the GIA problem. This framework sets up a foundation for the development and implementation of GIA.
Date issued
2016-05
URI
http://hdl.handle.net/1721.1/109362
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
IEEE Transactions on Signal Processing
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Ruan, Liangzhong, Vincent K. N. Lau, and Moe Z. Win. “Generalized Interference Alignment—Part I: Theoretical Framework.” IEEE Transactions on Signal Processing 64.10 (2016): 2675–2687.
Version: Original manuscript
ISSN
1053-587X
1941-0476

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.