Show simple item record

dc.contributor.authorDoshi-Valez, Finale
dc.contributor.authorKim, Been
dc.contributor.authorShah, Julie A
dc.date.accessioned2017-05-26T15:24:08Z
dc.date.available2017-05-26T15:24:08Z
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/1721.1/109373
dc.description.abstractWe present the Mind the Gap Model (MGM), an approach for interpretable feature extraction and selection. By placing interpretability criteria directly into the model, we allow for the model to both optimize parameters related to interpretability and to directly report a global set of distinguishable dimensions to assist with further data exploration and hypothesis generation. MGM extracts distinguishing features on real-world datasets of animal features, recipes ingredients, and disease co-occurrence. It also maintains or improves performance when compared to related approaches. We perform a user study with domain experts to show the MGM's ability to help with dataset explorationen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (ACI 1544628)en_US
dc.language.isoen_US
dc.publisherNeural Information Processing Systems Foundation Inc.en_US
dc.relation.isversionofhttp://papers.nips.cc/paper/5957-mind-the-gap-a-generative-approach-to-interpretable-feature-selection-and-extractionen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceNIPSen_US
dc.titleMind the Gap: A Generative Approach to Interpretable Feature Selection and Extractionen_US
dc.typeArticleen_US
dc.identifier.citationKim, Been, Julie A Shah, and Finale Doshi-Velez. “Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction.” Advances in Neural Information Processing Systems 28. Ed. C Cortes et al. Curran Associates, Inc., 2015. 2260–2268.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.approverShah, Julie Aen_US
dc.contributor.mitauthorKim, Been
dc.contributor.mitauthorShah, Julie A
dc.relation.journalAdvances in Neural Information Processing Systems 28 (NIPS 2015)en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsKim, Been; Shah, Julie A; Doshi-Velez, Finaleen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1338-8107
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record