Show simple item record

dc.contributor.authorXia, Victoria F.
dc.contributor.authorJaques, Natasha Mary
dc.contributor.authorTaylor, Sara Ann
dc.contributor.authorFedor, Szymon
dc.contributor.authorPicard, Rosalind W.
dc.date.accessioned2017-05-26T19:27:35Z
dc.date.available2017-05-26T19:27:35Z
dc.date.issued2016-02
dc.date.submitted2015-12
dc.identifier.isbn978-1-5090-1350-0
dc.identifier.urihttp://hdl.handle.net/1721.1/109392
dc.description.abstractTo filter noise or detect features within physiological signals, it is often effective to encode expert knowledge into a model such as a machine learning classifier. However, training such a model can require much effort on the part of the researcher; this often takes the form of manually labeling portions of signal needed to represent the concept being trained. Active learning is a technique for reducing human effort by developing a classifier that can intelligently select the most relevant data samples and ask for labels for only those samples, in an iterative process. In this paper we demonstrate that active learning can reduce the labeling effort required of researchers by as much as 84% for our application, while offering equivalent or even slightly improved machine learning performance.en_US
dc.description.sponsorshipMIT Media Lab Consortiumen_US
dc.description.sponsorshipRobert Wood Johnson Foundationen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/SPMB.2015.7405467en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleActive learning for electrodermal activity classificationen_US
dc.typeArticleen_US
dc.identifier.citationXia, Victoria, Natasha Jaques, Sara Taylor, Szymon Fedor, and Rosalind Picard. “Active Learning for Electrodermal Activity Classification.” 2015 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (December 2015).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratory. Affective Computing Groupen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorXia, Victoria F.
dc.contributor.mitauthorJaques, Natasha Mary
dc.contributor.mitauthorTaylor, Sara Ann
dc.contributor.mitauthorFedor, Szymon
dc.contributor.mitauthorPicard, Rosalind W.
dc.relation.journal2015 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsXia, Victoria; Jaques, Natasha; Taylor, Sara; Fedor, Szymon; Picard, Rosalinden_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8413-9469
dc.identifier.orcidhttps://orcid.org/0000-0003-4133-9230
dc.identifier.orcidhttps://orcid.org/0000-0002-9857-0188
dc.identifier.orcidhttps://orcid.org/0000-0002-5661-0022
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record