The mechanics and design of a lightweight three-dimensional graphene assembly
Author(s)
Qin, Zhao; Jung, Gang Seob; Kang, Min Jeong; Buehler, Markus J
DownloadThe mechanics and design.pdf (896.7Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Recent advances in three-dimensional (3D) graphene assembly have shown how we can make solid porous materials that are lighter than air. It is plausible that these solid materials can be mechanically strong enough for applications under extreme conditions, such as being a substitute for helium in filling up an unpowered flight balloon. However, knowledge of the elastic modulus and strength of the porous graphene assembly as functions of its structure has not been available, preventing evaluation of its feasibility. We combine bottom-up computational modeling with experiments based on 3D-printed models to investigate the mechanics of porous 3D graphene materials, resulting in new designs of carbon materials. Our study reveals that although the 3D graphene assembly has an exceptionally high strength at relatively high density (given the fact that it has a density of 4.6% that of mild steel and is 10 times as strong as mild steel), its mechanical properties decrease with density much faster than those of polymer foams. Our results provide critical densities below which the 3D graphene assembly starts to lose its mechanical advantage over most polymeric cellular materials.
Date issued
2017-01Department
Massachusetts Institute of Technology. Center for Computational Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental EngineeringJournal
Science Advances
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Qin, Zhao, Gang Seob Jung, Min Jeong Kang, and Markus J. Buehler. “The Mechanics and Design of a Lightweight Three-Dimensional Graphene Assembly.” Science Advances 3, no. 1 (January 2017): e1601536.
Version: Final published version
ISSN
2375-2548