MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Accelerated Greedy Missing Point Estimation Procedure

Author(s)
Zimmermann, Ralf; Willcox, Karen E
Thumbnail
DownloadAn accelerated.pdf (1.137Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Model reduction via Galerkin projection fails to provide considerable computational savings if applied to general nonlinear systems. This is because the reduced representation of the state vector appears as an argument to the nonlinear function, whose evaluation remains as costly as for the full model. Masked projection approaches, such as the missing point estimation and the (discrete) empirical interpolation method, alleviate this effect by evaluating only a small subset of the components of a given nonlinear term; however, the selection of the evaluated components is a combinatorial problem and is computationally intractable even for systems of small size. This has been addressed through greedy point selection algorithms, which minimize an error indicator by sequentially looping over all components. While doable, this is suboptimal and still costly. This paper introduces an approach to accelerate and improve the greedy search. The method is based on the observation that the greedy algorithm requires solving a sequence of symmetric rank-one modifications to an eigenvalue problem. For doing so, we develop fast approximations that sort the set of candidate vectors that induce the rank-one modifications, without requiring solution of the modified eigenvalue problem. Based on theoretical insights into symmetric rank-one eigenvalue modifications, we derive a variation of the greedy method that is faster than the standard approach and yields better results for the cases studied. The proposed approach is illustrated by numerical experiments, where we observe a speed-up by two orders of magnitude when compared to the standard greedy method while arriving at a better quality reduced model.
Date issued
2016-09
URI
http://hdl.handle.net/1721.1/109454
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
SIAM Journal on Scientific Computing
Publisher
Society for Industrial and Applied Mathematics
Citation
Zimmermann, R., and K. Willcox. “An Accelerated Greedy Missing Point Estimation Procedure.” SIAM Journal on Scientific Computing 38, no. 5 (January 2016): A2827–A2850.
Version: Final published version
ISSN
1064-8275
1095-7197

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.