dc.contributor.author | Bratlie, Kaitlin M | |
dc.contributor.author | York, Roger L. | |
dc.contributor.author | Invernale, Michael A. | |
dc.contributor.author | Langer, Robert S | |
dc.contributor.author | Anderson, Daniel Griffith | |
dc.date.accessioned | 2017-05-31T15:24:25Z | |
dc.date.available | 2017-05-31T15:24:25Z | |
dc.date.issued | 2012-05 | |
dc.date.submitted | 2012-02 | |
dc.identifier.issn | 2192-2640 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/109461 | |
dc.description.abstract | This review is focused on the materials and methods used to fabricate closed-loop systems for type 1 diabetes therapy. Herein, we give a brief overview of current methods used for patient care and discuss two types of possible treatments and the materials used for these therapies–(i) artificial pancreases, comprised of insulin producing cells embedded in a polymeric biomaterial, and (ii) totally synthetic pancreases formulated by integrating continuous glucose monitors with controlled insulin release through degradable polymers and glucose-responsive polymer systems. Both the artificial and the completely synthetic pancreas have two major design requirements: the device must be both biocompatible and be permeable to small molecules and proteins, such as insulin. Several polymers and fabrication methods of artificial pancreases are discussed: microencapsulation, conformal coatings, and planar sheets. We also review the two components of a completely synthetic pancreas. Several types of glucose sensing systems (including materials used for electrochemical, optical, and chemical sensing platforms) are discussed, in addition to various polymer-based release systems (including ethylene-vinyl acetate, polyanhydrides, and phenylboronic acid containing hydrogels). | en_US |
dc.description.sponsorship | Juvenile Diabetes Research Foundation International (17-2007-1063) | en_US |
dc.description.sponsorship | Leona M. and Harry B. Helmsley Charitable Trust (09PG-T1D027) | en_US |
dc.description.sponsorship | United States. National Institutes of Health (F32 EB011580-01) | en_US |
dc.language.iso | en_US | |
dc.publisher | Wiley Blackwell | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1002/adhm.201200037 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | PMC | en_US |
dc.title | Materials for Diabetes Therapeutics | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Bratlie, Kaitlin M.; York, Roger L.; Invernale, Michael A.;
Langer, Robert and Anderson, Daniel G. “Materials for Diabetes Therapeutics.” Advanced Healthcare Materials 1, no. 3 (April 2012): 267–284 © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim | en_US |
dc.contributor.department | Harvard University--MIT Division of Health Sciences and Technology | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | en_US |
dc.contributor.department | Koch Institute for Integrative Cancer Research at MIT | en_US |
dc.contributor.mitauthor | Bratlie, Kaitlin M | |
dc.contributor.mitauthor | York, Roger L. | |
dc.contributor.mitauthor | Invernale, Michael A. | |
dc.contributor.mitauthor | Langer, Robert S | |
dc.contributor.mitauthor | Anderson, Daniel Griffith | |
dc.relation.journal | Advanced Healthcare Materials | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Bratlie, Kaitlin M.; York, Roger L.; Invernale, Michael A.;
Langer, Robert; Anderson, Daniel G. | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-4255-0492 | |
dc.identifier.orcid | https://orcid.org/0000-0001-5629-4798 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |