Show simple item record

dc.contributor.authorAaronson, Scott
dc.date.accessioned2017-05-31T20:37:34Z
dc.date.available2017-05-31T20:37:34Z
dc.date.issued2009-01
dc.identifier.issn1533-7146
dc.identifier.urihttp://hdl.handle.net/1721.1/109480
dc.description.abstractWhether the class QMA (Quantum Merlin Arthur) is equal to QMA1, or QMA with onesided error, has been an open problem for years. This note helps to explain why the problem is difficult, by using ideas from real analysis to give a "quantum oracle" relative to which QMA ≠ QMA1. As a byproduct, we find that there are facts about quantum complexity classes that are classically relativizing but not quantumly relativizing, among them such "trivial" containments as BQP ⊆ ZQEXP.en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dl.acm.org/citation.cfm?id=2021261en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceS. Aaronsonen_US
dc.titleOn perfect completeness for QMAen_US
dc.typeArticleen_US
dc.identifier.citationAaronson, Scott. "On perfect completeness for QMA." Quantum Information & Computation 9:1 (January 2009), pp. 81-89.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverAaronson, Scotten_US
dc.contributor.mitauthorAaronson, Scott
dc.relation.journalQuantum Information & Computationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/SubmittedJournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAaronson, Scotten_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1333-4045
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record