Show simple item record

dc.contributor.authorAkkaladevi, Narahari
dc.contributor.authorMukherjee, Srayanta
dc.contributor.authorKatayama, Hiroo
dc.contributor.authorJanowiak, Blythe
dc.contributor.authorPatel, Deepa
dc.contributor.authorGogol, Edward P.
dc.contributor.authorPentelute, Bradley L.
dc.contributor.authorJohn Collier, R.
dc.contributor.authorFisher, Mark T.
dc.date.accessioned2017-06-01T17:02:48Z
dc.date.available2017-06-01T17:02:48Z
dc.date.issued2015-01
dc.date.submitted2014-10
dc.identifier.issn0022-2631
dc.identifier.issn1432-1424
dc.identifier.urihttp://hdl.handle.net/1721.1/109504
dc.description.abstractBacterial toxin or viral entry into the cell often requires cell surface binding and endocytosis. The endosomal acidification induces a limited unfolding/refolding and membrane insertion reaction of the soluble toxins or viral proteins into their translocation competent or membrane inserted states. At the molecular level, the specific orientation and immobilization of the pre-transitioned toxin on the cell surface is often an important prerequisite prior to cell entry. We propose that structures of some toxin membrane insertion complexes may be observed through procedures where one rationally immobilizes the soluble toxin so that potential unfolding ↔ refolding transitions that occur prior to membrane insertion orientate away from the immobilization surface in the presence of lipid micelle pre-nanodisc structures. As a specific example, the immobilized prepore form of the anthrax toxin pore translocon or protective antigen can be transitioned, inserted into a model lipid membrane (nanodiscs), and released from the immobilized support in its membrane solubilized form. This particular strategy, although unconventional, is a useful procedure for generating pure membrane-inserted toxins in nanodiscs for electron microscopy structural analysis. In addition, generating a similar immobilized platform on label-free biosensor surfaces allows one to observe the kinetics of these acid-induced membrane insertion transitions. These platforms can facilitate the rational design of inhibitors that specifically target the toxin membrane insertion transitions that occur during endosomal acidification. This approach may lead to a new class of direct anti-toxin inhibitors.en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00232-014-9768-3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleFollowing Natures Lead: On the Construction of Membrane-Inserted Toxins in Lipid Bilayer Nanodiscsen_US
dc.typeArticleen_US
dc.identifier.citationAkkaladevi, Narahari; Mukherjee, Srayanta; Katayama, Hiroo; Janowiak, Blythe; Patel, Deepa; Gogol, Edward P.; Pentelute, Bradley L.; John Collier, R. and Fisher, Mark T. “Following Natures Lead: On the Construction of Membrane-Inserted Toxins in Lipid Bilayer Nanodiscs.” The Journal of Membrane Biology 248, no. 3 (January 2015): 595–607 © 2015 Springer Science+Business Media New Yorken_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.mitauthorPentelute, Bradley L.
dc.relation.journalThe Journal of Membrane Biologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAkkaladevi, Narahari; Mukherjee, Srayanta; Katayama, Hiroo; Janowiak, Blythe; Patel, Deepa; Gogol, Edward P.; Pentelute, Bradley L.; John Collier, R.; Fisher, Mark T.en_US
dspace.embargo.termsNen_US
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record