Show simple item record

dc.contributor.authorCroll, Bryce
dc.contributor.authorDalba, Paul A.
dc.contributor.authorVanderburg, Andrew
dc.contributor.authorEastman, Jason
dc.contributor.authorDeVore, John
dc.contributor.authorBieryla, Allyson
dc.contributor.authorMuirhead, Philip S.
dc.contributor.authorHan, Eunkyu
dc.contributor.authorLatham, David W.
dc.contributor.authorBeatty, Thomas G.
dc.contributor.authorWittenmyer, Robert A.
dc.contributor.authorWright, Jason T.
dc.contributor.authorJohnson, John Asher
dc.contributor.authorMcCrady, Nate
dc.contributor.authorRappaport, Saul A
dc.date.accessioned2017-06-01T17:24:41Z
dc.date.available2017-06-01T17:24:41Z
dc.date.issued2017-02
dc.date.submitted2016-12
dc.identifier.issn1538-4357
dc.identifier.urihttp://hdl.handle.net/1721.1/109507
dc.description.abstractWe present multiwavelength, ground-based follow-up photometry of the white dwarf WD 1145+017, which has recently been suggested to be orbited by up to six or more short-period, low-mass, disintegrating planetesimals. We detect nine significant dips in flux of between 10% and 30% of the stellar flux in our ~32 hr of photometry, suggesting that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the asymmetric transits that we observe, we confirm that the transit egress is usually longer than the ingress, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals are unclear, but at least one object, and likely more, have orbital periods of ~4.5 hr. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high-precision photometry also displays low-amplitude variations, suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. We compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions, the radius of single-size particles in the cometary tails streaming behind the planetesimals must be ~0.15 μm or larger, or ~0.06 μm or smaller, with 2σ confidence.en_US
dc.language.isoen_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.3847/1538-4357/836/1/82en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIOP Publishingen_US
dc.titleMultiwavelength Transit Observations of the Candidate Disintegrating Planetesimals Orbiting WD 1145+017en_US
dc.typeArticleen_US
dc.identifier.citationCroll, Bryce, Paul A. Dalba, Andrew Vanderburg, Jason Eastman, Saul Rappaport, John DeVore, Allyson Bieryla, et al. “Multiwavelength Transit Observations of the Candidate Disintegrating Planetesimals Orbiting WD 1145+017.” The Astrophysical Journal 836, no. 1 (February 2017): 82 © 2017 The American Astronomical Societyen_US
dc.contributor.departmentMIT Kavli Institute for Astrophysics and Space Researchen_US
dc.contributor.mitauthorRappaport, Saul A
dc.relation.journalThe Astrophysical Journalen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCroll, Bryce; Dalba, Paul A.; Vanderburg, Andrew; Eastman, Jason; Rappaport, Saul; DeVore, John; Bieryla, Allyson; Muirhead, Philip S.; Han, Eunkyu; Latham, David W.; Beatty, Thomas G.; Wittenmyer, Robert A.; Wright, Jason T.; Johnson, John Asher; McCrady, Nateen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3182-5569
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record