MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

First-Principles Monte Carlo Simulations of Reaction Equilibria in Compressed Vapors

Author(s)
Fetisov, Evgenii O.; Kuo, I-Feng William; Knight, Chris; VandeVondele, Joost; Van Voorhis, Troy; Siepmann, J. Ilja; ... Show more Show less
Thumbnail
DownloadVan Voorhis_First-Principles Monte.pdf (947.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Predictive modeling of reaction equilibria presents one of the grand challenges in the field of molecular simulation. Difficulties in the study of such systems arise from the need (i) to accurately model both strong, short-ranged interactions leading to the formation of chemical bonds and weak interactions arising from the environment, and (ii) to sample the range of time scales involving frequent molecular collisions, slow diffusion, and infrequent reactive events. Here we present a novel reactive first-principles Monte Carlo (RxFPMC) approach that allows for investigation of reaction equilibria without the need to prespecify a set of chemical reactions and their ideal-gas equilibrium constants. We apply RxFPMC to investigate a nitrogen/oxygen mixture at T = 3000 K and p = 30 GPa, i.e., conditions that are present in atmospheric lightning strikes and explosions. The RxFPMC simulations show that the solvation environment leads to a significantly enhanced NO concentration that reaches a maximum when oxygen is present in slight excess. In addition, the RxFPMC simulations indicate the formation of NO[subscript 2] and N[subscript 2]O in mole fractions approaching 1%, whereas N[subscript 3] and O[subscript 3] are not observed. The equilibrium distributions obtained from the RxFPMC simulations agree well with those from a thermochemical computer code parametrized to experimental data.
Date issued
2016-06
URI
http://hdl.handle.net/1721.1/109541
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
ACS Central Science
Publisher
American Chemical Society (ACS)
Citation
.Fetisov, Evgenii O. et al. “First-Principles Monte Carlo Simulations of Reaction Equilibria in Compressed Vapors.” ACS Central Science 2.6 (2016): 409–415. © 2016 American Chemical Society
Version: Final published version
ISSN
2374-7943
2374-7951

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.