Show simple item record

dc.contributor.authorJung, Jae-Il
dc.contributor.authorRisch, Marcel
dc.contributor.authorPark, Seungkyu
dc.contributor.authorKim, Min Gyu
dc.contributor.authorNam, Gyutae
dc.contributor.authorJeong, Hu-Young
dc.contributor.authorShao-Horn, Yang
dc.contributor.authorCho, Jaephil
dc.date.accessioned2017-06-02T18:29:30Z
dc.date.available2017-06-02T18:29:30Z
dc.date.issued2015-10
dc.date.submitted2015-10
dc.identifier.issn1754-5692
dc.identifier.issn1754-5706
dc.identifier.urihttp://hdl.handle.net/1721.1/109557
dc.description.abstractHighly efficient bifunctional oxygen electrocatalysts are indispensable for the development of highly efficient regenerative fuel cells and rechargeable metal-air batteries, which could power future electric vehicles. Although perovskite oxides are known to have high intrinsic activity, large particle sizes rendered from traditional synthesis routes limit their practical use due to low mass activity. We report the synthesis of nano-sized perovskite particles with a nominal composition of Lax(Ba[subscript 0.5]Sr[subscript 0.5])[subscript 1−x]Co[subscript 0.8]Fe[subscript 0.2]O[subscript 3−δ] (BSCF), where lanthanum concentration and calcination temperature were controlled to influence oxide defect chemistry and particle growth. This approach produced bifunctional perovskite electrocatalysts ∼50 nm in size with supreme activity and stability for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The electrocatalysts preferentially reduced oxygen to water (<5% peroxide yield), exhibited more than 20 times higher gravimetric activity (A g[superscript −1]) than IrO[subscript 2] in OER half-cell tests (0.1 M KOH), and surpassed the charge/discharge performance of Pt/C (20 wt%) in zinc-air full cell tests (6 M KOH). Our work provides a general strategy for designing perovskite oxides as inexpensive, stable and highly active bifunctional electrocatalysts for future electrochemical energy storage and conversion devices.en_US
dc.description.sponsorshipMIT & Masdar Institute Cooperative Program (02/MI/MIT/CP/11/07633/GEN/G/00)en_US
dc.description.sponsorshipMIT Skoltech Initiativeen_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c5ee03124aen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Shao-Horn via Angie Locknaren_US
dc.titleOptimizing nanoparticle perovskite for bifunctional oxygen electrocatalysisen_US
dc.typeArticleen_US
dc.identifier.citationJung, Jae-Il et al. “Optimizing Nanoparticle Perovskite for Bifunctional Oxygen Electrocatalysis.” Energy Environ. Sci. 9.1 (2016): 176–183.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Electrochemical Energy Laboratoryen_US
dc.contributor.approverShao-Horn, Yangen_US
dc.contributor.mitauthorRisch, Marcel
dc.contributor.mitauthorShao-Horn, Yang
dc.relation.journalEnergy and Environmental Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsJung, Jae-Il; Risch, Marcel; Park, Seungkyu; Kim, Min Gyu; Nam, Gyutae; Jeong, Hu-Young; Shao-Horn, Yang; Cho, Jaephilen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2820-7006
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record