MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Minimal Models for Nonreciprocal Amplification Using Biharmonic Drives

Author(s)
Metelmann, A.; Kamal, Archana
Thumbnail
DownloadPhysRevApplied.7.034031.pdf (683.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present a generic system of three bosonic modes coupled parametrically with a time-varying coupling modulated by a combination of two pump harmonics, and we show how this system provides the minimal platform for realizing nonreciprocal couplings that can lead to gainless photon circulation, and phase-preserving or phase-sensitive directional amplification. Explicit frequency-dependent calculations within this minimal paradigm highlight the separation of amplification and directionality bandwidths, a feature generic to such schemes. We also study the influence of counterrotating interactions that can adversely affect directionality and the associated bandwidth; we find that these effects can be mitigated by suitably designing the properties of the auxiliary mode that plays the role of an engineered reservoir to the amplification mode space.
Date issued
2017-03
URI
http://hdl.handle.net/1721.1/109574
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Physical Review Applied
Publisher
American Physical Society
Citation
Kamal, A., and A. Metelmann. “Minimal Models for Nonreciprocal Amplification Using Biharmonic Drives.” Physical Review Applied 7.3 (2017): n. pag. © 2017 American Physical Society
Version: Final published version
ISSN
2331-7019

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.