MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Metallicity Distribution and Hot Jupiter Rate of the Kepler Field: Hectochelle High-Resolution Spectroscopy for 776 Kepler Target Stars

Author(s)
Guo, Xueying; Johnson, John A.; Mann, Andrew W.; Kraus, Adam L.; Curtis, Jason L.; Latham, David W.; ... Show more Show less
Thumbnail
DownloadGuo-2017-The Metallicity Distribution and Hot.pdf (2.387Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The occurrence rate of hot Jupiters from the Kepler transit survey is roughly half that of radial velocity surveys targeting solar neighborhood stars. One hypothesis to explain this difference is that the two surveys target stars with different stellar metallicity distributions. To test this hypothesis, we measure the metallicity distribution of the Kepler targets using the Hectochelle multi-fiber, high-resolution spectrograph. Limiting our spectroscopic analysis to 610 dwarf stars in our sample with log g > 3.5, we measure a metallicity distribution characterized by a mean of [M/H][subscript mean] = -0.045±0.009, in agreement with previous studies of the Kepler field target stars. In comparison, the metallicity distribution of the California Planet Search radial velocity sample has a mean of [M/H][subscript CPS,mean] = -0.005±0.006, and the samples come from different parent populations according to a Kolmogorov–Smirnov test. We refit the exponential relation between the fraction of stars hosting a close-in giant planet and the host star metallicity using a sample of dwarf stars from the California Planet Search with updated metallicities. The best-fit relation tells us that the difference in metallicity between the two samples is insufficient to explain the discrepant hot Jupiter occurrence rates; the metallicity difference would need to be sime0.2–0.3 dex for perfect agreement. We also show that (sub)giant contamination in the Kepler sample cannot reconcile the two occurrence calculations. We conclude that other factors, such as binary contamination and imperfect stellar properties, must also be at play.
Date issued
2017-03
URI
http://hdl.handle.net/1721.1/109597
Department
Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space Research
Journal
Astrophysical Journal
Publisher
IOP Publishing
Citation
Guo, Xueying; Johnson, John A.; Mann, Andrew W.; Kraus, Adam L.; Curtis, Jason L. and Latham, David W. “The Metallicity Distribution and Hot Jupiter Rate of the Kepler Field: Hectochelle High-Resolution Spectroscopy for 776 Kepler Target Stars.” The Astrophysical Journal 838, no. 1 (March 2017): 25 © 2017 The American Astronomical Society
Version: Final published version
ISSN
1538-4357
0004-637X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.