Show simple item record

dc.contributor.authorBrown, Forrest B.
dc.contributor.authorWalsh, Jonathan Alan
dc.contributor.authorForget, Benoit Robert Yves
dc.contributor.authorSmith, Kord S.
dc.date.accessioned2017-06-07T19:59:50Z
dc.date.available2017-06-07T19:59:50Z
dc.date.issued2016-08
dc.date.submitted2016-05
dc.identifier.isbn9781510825734
dc.identifier.urihttp://hdl.handle.net/1721.1/109720
dc.description.abstractIn this work we present a scheme for computing temperature-dependent unresolved resonance region cross sections in Monte Carlo neutron transport simulations. This approach relies on the generation of equiprobable cross section magnitude bands on an energy-temperature mesh. The bands are then interpolated in energy and temperature to obtain a cross section value. This is in contrast to the typical procedure of pre-generating probability tables at all temperatures present in the simulation. As part of this work, a flexible probability table generation capability is integrated into the continuous-energy neutron transport code OpenMC [1]. Both single-level and multi-level Breit-Wigner formalisms are supported, as is modeling of the resonance structure of competitive reactions. A user-specified cross section band tolerance is enabled with batch statistics. Probability tables are generated for all 268 ENDF/B-VII.1 [2] isotopes that have an unresolved resonance region evaluation. Integral benchmark simulations of the Big Ten critical assembly show that, for a system that is sensitive to the unresolved resonance region, a temperature interval of ∼200 K around 293.6 K is sufficient to reproduce the keff value that is obtained with probability tables generated exactly at room temperature. A finer mesh of < 50 K is required to reproduce some cross section values at the common target relative difference of 0.1%en_US
dc.language.isoen_US
dc.publisherAmerican Nuclear Society (ANS)en_US
dc.relation.isversionofhttp://www.proceedings.com/30896.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Forget via Chris Sherratten_US
dc.titleOn-the-fly doppler broadening of unresolved resonance region cross sections via probability band interpolationen_US
dc.typeArticleen_US
dc.identifier.citationWalsh, Jonathan A. et al. "On-The-Fly Doppler Broadening of Unresolved Resonance Region Cross Sections via Probability Band Interpolation." Physics of Reactors 2016 (PHYSOR 2016): Unifying Theory and Experiments in the 21st Century, 1-5 May, 2016, Sun Valley Resort, Idaho, USA, American Nuclear Society, 2016.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorWalsh, Jonathan Alan
dc.contributor.mitauthorForget, Benoit Robert Yves
dc.contributor.mitauthorSmith, Kord S.
dc.relation.journalProceedings of Physics of Reactors 2016 (PHYSOR 2016): Unifying Theory and Experiments in the 21st Centuryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsWalsh, Jonathan A.; Forget, Benoit; Smith, Kord S.; Brown, Forrest B.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2542-1149
dc.identifier.orcidhttps://orcid.org/0000-0003-1459-7672
dc.identifier.orcidhttps://orcid.org/0000-0003-2497-4312
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record