MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High Performance, Point-to-Point, Transmission Line Signaling

Author(s)
DeHon, Andre; Knight Jr, Thomas F
Thumbnail
DownloadVLSI.1998.084860.pdf (3.268Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
Inter-chip signaling latency and bandwidth can be key factors limiting the performance of large VLSI systems. We present a high performance, transmission line signaling scheme for point-to-point communications between VLSI components. In particular, we detail circuitry which allows a pad driver to sense the voltage level on the attached pad during signaling and adjust the drive impedance to match the external transmission line impedance. This allows clean, reflection-free signaling despite the wide range of variations common in IC device processing and interconnect fabrication. Further, we show how similar techniques can be used to adjust the arrival time of signals to allow high signaling bandwidth despite variations in interconnect delays.This scheme employed for high performance signaling is a specific embodiment of a more general technique. Conventional electronic systems must accommodate a range of system characteristics (e.g. delay, voltage, impedance). As a result, circuit designers traditionally build large operating margins into their circuits to guarantee proper operation across all possible ranges of these characteristics. These margins are generally added at the expense of performance. The alternative scheme exemplified here is to sample these system characteristics in the device's final operating environment and use this feedback to tune system operation around the observed characteristics. This tuning operation reduces the range of characteristics the system must accommodate, allowing increased performance. We briefly contrast this sampled, system-level feedback with the more conventional, fine-grained feedback employed on ICs (e.g. PLLs).
Date issued
1998-01
URI
http://hdl.handle.net/1721.1/109724
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
VLSI Design
Publisher
Hindawi Publishing Corporation
Citation
Dehon, André, and Thomas F. Knight. “High Performance, Point-to-Point, Transmission Line Signaling.” VLSI Design 7.1 (1998): 111–129. © 1998 Hindawi Publishing Corporation
Version: Final published version
ISSN
1065-514X
1563-5171

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.