Show simple item record

dc.contributor.authorAhmad, Ehsan A.
dc.contributor.authorTileli, Vasiliki
dc.contributor.authorKramer, Denis
dc.contributor.authorMallia, Giuseppe
dc.contributor.authorStoerzinger, Kelsey A.
dc.contributor.authorShao-Horn, Yang
dc.contributor.authorKucernak, Anthony R.
dc.contributor.authorHarrison, Nicholas M.
dc.date.accessioned2017-06-08T14:54:44Z
dc.date.available2017-06-08T14:54:44Z
dc.date.issued2015-06
dc.date.submitted2015-06
dc.identifier.issn1932-7447
dc.identifier.issn1932-7455
dc.identifier.urihttp://hdl.handle.net/1721.1/109739
dc.description.abstractCatalytic activity of perovskites for oxygen reduction (ORR) was recently correlated with bulk d-electron occupancy of the transition metal. We expand on the resultant model, which successfully reproduces the high activity of LaMnO[subscript 3] relative to other perovskites, by addressing catalyst surface morphology as an important aspect of the optimal ORR catalyst. The nature of reaction sites on low index surfaces of orthorhombic (Pnma) LaMnO[subscript 3] is established from First Principles. The adsorption of O[subscript 2] is markedly influenced by local geometry and strong electron correlation. Only one of the six reactions sites that result from experimentally confirmed symmetry-breaking Jahn–Teller distortions is found to bind O[subscript 2] with an intermediate binding energy while facilitating the formation of superoxide, an important ORR intermediate in alkaline media. As demonstrated here for LaMnO[subscript 3], rational design of the catalyst morphology to promote specific active sites is a highly effective optimization strategy for advanced functional ORR catalysts.en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.jpcc.5b05460en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Shao-Horn via Angie Locknaren_US
dc.titleOptimizing Oxygen Reduction Catalyst Morphologies from First Principlesen_US
dc.typeArticleen_US
dc.identifier.citationAhmad, Ehsan A. et al. “Optimizing Oxygen Reduction Catalyst Morphologies from First Principles.” The Journal of Physical Chemistry C 119.29 (2015): 16804–16810.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverShao-Horn, Yangen_US
dc.contributor.mitauthorShao-Horn, Yang
dc.relation.journalThe Journal of Physical Chemistry Cen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAhmad, Ehsan A.; Tileli, Vasiliki; Kramer, Denis; Mallia, Giuseppe; Stoerzinger, Kelsey A.; Shao-Horn, Yang; Kucernak, Anthony R.; Harrison, Nicholas M.en_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record