Show simple item record

dc.contributor.authorKelly, Elyza
dc.contributor.authorTurner, Daria
dc.contributor.authorSahin, Mustafa
dc.contributor.authorCanovic, Elizabeth
dc.contributor.authorQing, Bo
dc.contributor.authorMijailovic, Aleksandar S.
dc.contributor.authorJagielska, Anna
dc.contributor.authorWhitfield, Matthew J
dc.contributor.authorVan Vliet, Krystyn J
dc.date.accessioned2017-06-12T19:47:53Z
dc.date.available2017-06-12T19:47:53Z
dc.date.issued2016-09
dc.identifier.issn1940-087X
dc.identifier.urihttp://hdl.handle.net/1721.1/109802
dc.description.abstractTo design and engineer materials inspired by the properties of the brain, whether for mechanical simulants or for tissue regeneration studies, the brain tissue itself must be well characterized at various length and time scales. Like many biological tissues, brain tissue exhibits a complex, hierarchical structure. However, in contrast to most other tissues, brain is of very low mechanical stiffness, with Young's elastic moduli E on the order of 100s of Pa. This low stiffness can present challenges to experimental characterization of key mechanical properties. Here, we demonstrate several mechanical characterization techniques that have been adapted to measure the elastic and viscoelastic properties of hydrated, compliant biological materials such as brain tissue, at different length scales and loading rates. At the microscale, we conduct creep-compliance and force relaxation experiments using atomic force microscope-enabled indentation. At the mesoscale, we perform impact indentation experiments using a pendulum-based instrumented indenter. At the macroscale, we conduct parallel plate rheometry to quantify the frequency dependent shear elastic moduli. We also discuss the challenges and limitations associated with each method. Together these techniques enable an in-depth mechanical characterization of brain tissue that can be used to better understand the structure of brain and to engineer bio-inspired materials.en_US
dc.language.isoen_US
dc.publisherMyJoVE Corporationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3791/54201en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceJournal of Visualized Experiments (JoVE)en_US
dc.titleCharacterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy, Impact Indentation, and Rheometryen_US
dc.typeArticleen_US
dc.identifier.citationCanovic, Elizabeth Peruski; Qing, Bo; Mijailovic, Aleksandar S.; Jagielska, Anna; Whitfield, Matthew J.; Kelly, Elyza; Turner, Daria; Sahin, Mustafa and Van Vliet, Krystyn J. “Characterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy, Impact Indentation, and Rheometry.” Journal of Visualized Experiments no. 115 (September 2016): e54201 © 2016 Journal of Visualized Experimentsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorCanovic, Elizabeth
dc.contributor.mitauthorQing, Bo
dc.contributor.mitauthorMijailovic, Aleksandar S.
dc.contributor.mitauthorJagielska, Anna
dc.contributor.mitauthorWhitfield, Matthew J
dc.contributor.mitauthorVan Vliet, Krystyn J
dc.relation.journalJournal of Visualized Experimentsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCanovic, Elizabeth Peruski; Qing, Bo; Mijailovic, Aleksandar S.; Jagielska, Anna; Whitfield, Matthew J.; Kelly, Elyza; Turner, Daria; Sahin, Mustafa; Van Vliet, Krystyn J.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8169-2234
dc.identifier.orcidhttps://orcid.org/0000-0001-6290-3916
dc.identifier.orcidhttps://orcid.org/0000-0003-1252-8921
dc.identifier.orcidhttps://orcid.org/0000-0001-5735-0560
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record