MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tight SoS-Degree Bounds for Approximate Nash Equilibria

Author(s)
Wu, Xiaodi; Harrow, Aram W; Natarajan, Anand Venkat
Thumbnail
DownloadTight sos-degree.pdf (589.9Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Nash equilibria always exist, but are widely conjectured to require time to find that is exponential in the number of strategies, even for two-player games. By contrast, a simple quasi-polynomial time algorithm, due to Lipton, Markakis and Mehta (LMM), can find approximate Nash equilibria, in which no player can improve their utility by more than ε by changing their strategy. The LMM algorithm can also be used to find an approximate Nash equilibrium with near-maximal total welfare. Matching hardness results for this optimization problem were found assuming the hardness of the planted-clique problem (by Hazan and Krauthgamer) and assuming the Exponential Time Hypothesis (by Braverman, Ko and Weinstein). In this paper we consider the application of the sum-squares (SoS) algorithm from convex optimization to the problem of optimizing over Nash equilibria. We show the first unconditional lower bounds on the number of levels of SoS needed to achieve a constant factor approximation to this problem. While it may seem that Nash equilibria do not naturally lend themselves to convex optimization, we also describe a simple LP (linear programming) hierarchy that can find an approximate Nash equilibrium in time comparable to that of the LMM algorithm, although neither algorithm is obviously a generalization of the other. This LP can be viewed as arising from the SoS algorithm at log n levels – matching our lower bounds. The lower bounds involve a modification of the Braverman-Ko-Weinstein embedding of CSPs into strategic games and techniques from sum-of-squares proof systems. The upper bound (i.e. analysis of the LP) uses information-theory techniques that have been recently applied to other linear- and semidefinite programming hierarchies.
Date issued
2016-05
URI
http://hdl.handle.net/1721.1/109803
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Leibniz International Proceedings in Informatics
Publisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Citation
Harrow, Aram et al. "Tight SoS-Degree Bounds for Approximate Nash Equilibria." Leibniz International Proceedings in Informatics 22 (2016): 22:2-22:25.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.