Show simple item record

dc.contributor.authorAmitai, Assaf
dc.contributor.authorSeeber, Andrew
dc.contributor.authorGasser, Susan M.
dc.contributor.authorHolcman, David
dc.date.accessioned2017-06-13T18:18:01Z
dc.date.available2017-06-13T18:18:01Z
dc.date.issued2017-01
dc.date.submitted2016-12
dc.identifier.issn2211-1247
dc.identifier.urihttp://hdl.handle.net/1721.1/109829
dc.description.abstractChromatin moves with subdiffusive and spatially constrained dynamics within the cell nucleus. Here, we use single-locus tracking by time-lapse fluorescence microscopy to uncover information regarding the forces that influence chromatin movement following the induction of a persistent DNA double-strand break (DSB). Using improved time-lapse imaging regimens, we monitor trajectories of tagged DNA loci at a high temporal resolution, which allows us to extract biophysical parameters through robust statistical analysis. Polymer modeling based on these parameters predicts chromatin domain expansion near a DSB and damage extrusion from the domain. Both phenomena are confirmed by live imaging in budding yeast. Calculation of the anomalous exponent of locus movement allows us to differentiate forces imposed on the nucleus through the actin cytoskeleton from those that arise from INO80 remodeler-dependent changes in nucleosome organization. Our analytical approach can be applied to high-density single-locus trajectories obtained in any cell type.en_US
dc.language.isoen_US
dc.publisher2211-1247en_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.celrep.2017.01.018en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleVisualization of Chromatin Decompaction and Break Site Extrusion as Predicted by Statistical Polymer Modeling of Single-Locus Trajectoriesen_US
dc.typeArticleen_US
dc.identifier.citationAmitai, Assaf; Seeber, Andrew; Gasser, Susan M. and Holcman, David. “Visualization of Chromatin Decompaction and Break Site Extrusion as Predicted by Statistical Polymer Modeling of Single-Locus Trajectories.” Cell Reports 18, no. 5 (January 2017): 1200–1214 © 2017 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.mitauthorAmitai, Assaf
dc.relation.journalCell Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAmitai, Assaf; Seeber, Andrew; Gasser, Susan M.; Holcman, Daviden_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8594-6529
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record