Show simple item record

dc.contributor.authorAllalou, Amin
dc.contributor.authorWu, Yuelong
dc.contributor.authorGhannad Rezaie, Mostafa
dc.contributor.authorEimon, Peter
dc.contributor.authorYanik, Mehmet F
dc.date.accessioned2017-06-13T20:12:42Z
dc.date.available2017-06-13T20:12:42Z
dc.date.issued2017-04
dc.identifier.issn2050-084X
dc.identifier.urihttp://hdl.handle.net/1721.1/109843
dc.description.abstractHere, we describe an automated platform suitable for large-scale deep-phenotyping of zebrafish mutant lines, which uses optical projection tomography to rapidly image brain-specific gene expression patterns in 3D at cellular resolution. Registration algorithms and correlation analysis are then used to compare 3D expression patterns, to automatically detect all statistically significant alterations in mutants, and to map them onto a brain atlas. Automated deep-phenotyping of a mutation in the master transcriptional regulator fezf2 not only detects all known phenotypes but also uncovers important novel neural deficits that were overlooked in previous studies. In the telencephalon, we show for the first time that fezf2 mutant zebrafish have significant patterning deficits, particularly in glutamatergic populations. Our findings reveal unexpected parallels between fezf2 function in zebrafish and mice, where mutations cause deficits in glutamatergic neurons of the telencephalon-derived neocortex.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Director’s Pioneer Award DP1-NS082101)en_US
dc.description.sponsorshipDavid & Lucile Packard Foundation. Award in Science and Engineeringen_US
dc.description.sponsorshipBroad Institute of MIT and Harvard (SPARC Award)en_US
dc.description.sponsorshipEpilepsy Foundation of America (Postdoctoral Fellowship)en_US
dc.language.isoen_US
dc.publishereLife Sciences Publications, Ltd.en_US
dc.relation.isversionofhttp://dx.doi.org/10.7554/eLife.23379en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceeLifeen_US
dc.titleAutomated deep-phenotyping of the vertebrate brainen_US
dc.typeArticleen_US
dc.identifier.citationAllalou, Amin et al. “Automated Deep-Phenotyping of the Vertebrate Brain.” eLife 6 (2017): n. pag.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorAllalou, Amin
dc.contributor.mitauthorWu, Yuelong
dc.contributor.mitauthorGhannad Rezaie, Mostafa
dc.contributor.mitauthorEimon, Peter
dc.contributor.mitauthorYanik, Mehmet F
dc.relation.journaleLifeen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAllalou, Amin; Wu, Yuelong; Ghannad-Rezaie, Mostafa; Eimon, Peter M; Yanik, Mehmet Fatihen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4028-8443
dc.identifier.orcidhttps://orcid.org/0000-0003-0075-1237
dc.identifier.orcidhttps://orcid.org/0000-0003-1928-1909
dc.identifier.orcidhttps://orcid.org/0000-0003-0447-517X
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record