MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impact of non-ideality on mixing of hydrocarbons and water at supercritical or near-critical conditions

Author(s)
Ghoniem, Ahmed F; He, Ping; Raghavan, Ashwin
Thumbnail
DownloadMixing-PingHe.pdf (3.417Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The mixing of a single-component or multi-component hydrocarbon (HC) droplet in supercritical or near-critical water (SCW/NCW) is modeled. Transport, thermodynamics, and phase equilibrium sub-models are used to estimate the relevant physical properties. We use a generalized Maxwell–Stefan (MS) expression to model the multi-component mass transfer and a diffusion driving force expressed in terms of fugacity gradients to account for effects of non-ideality on mass fluxes. We compare the ideal and non-ideal diffusive driving forces for different mixing conditions and different HCs, and show that when the mixing temperature is close to or greater than the upper critical solution temperature (UCST), the non-ideal driving force model predicts a much slower mixing process and higher concentrations of the heavier HC than the ideal driving force, due to the presence of a diffusion barrier captured by the non-ideal driving force model.
Date issued
2015-04
URI
http://hdl.handle.net/1721.1/109935
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Supercritical Fluids The
Publisher
Elsevier
Citation
He, Ping; Raghavan, Ashwin and Ghoniem, Ahmed F. “Impact of Non-Ideality on Mixing of Hydrocarbons and Water at Supercritical or Near-Critical Conditions.” The Journal of Supercritical Fluids 102 (July 2015): 50–65 © 2015 Elsevier B.V.
Version: Author's final manuscript
ISSN
0896-8446

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.