Show simple item record

dc.contributor.authorModaresi, Sina
dc.contributor.authorVielma Centeno, Juan Pablo
dc.date.accessioned2017-06-16T15:34:14Z
dc.date.available2018-05-06T05:00:05Z
dc.date.issued2017-07
dc.identifier.issn0025-5610
dc.identifier.issn1436-4646
dc.identifier.urihttp://hdl.handle.net/1721.1/109951
dc.description.abstractIn this paper we consider an aggregation technique introduced by Yıldıran (J Math Control Inf 26:417–450, 2009) to study the convex hull of regions defined by two quadratic inequalities or by a conic quadratic and a quadratic inequality. Yıldıran (2009) shows how to characterize the convex hull of open sets defined by two strict quadratic inequalities using Linear Matrix Inequalities. We show how this aggregation technique can be easily extended to yield valid conic quadratic inequalities for the convex hull of open sets defined by two strict quadratic inequalities or by a strict conic quadratic and a strict quadratic inequality. We also show that for sets defined by a strict conic quadratic and a strict quadratic inequality, under one additional containment assumption, these valid inequalities characterize the convex hull exactly. We also show that under certain topological assumptions, the results from the open setting can be extended to characterize the closed convex hull of sets defined with non-strict conic and quadratic inequalities.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CMMI-1030662)en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10107-016-1084-5en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleConvex hull of two quadratic or a conic quadratic and a quadratic inequalityen_US
dc.typeArticleen_US
dc.identifier.citationModaresi, Sina, and Juan Pablo Vielma. “Convex Hull of Two Quadratic or a Conic Quadratic and a Quadratic Inequality.” Mathematical Programming 164.1–2 (2017): 383–409.en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorVielma Centeno, Juan Pablo
dc.relation.journalMathematical Programmingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-06-10T03:56:30Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg and Mathematical Optimization Society
dspace.orderedauthorsModaresi, Sina; Vielma, Juan Pabloen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0003-4335-7248
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record