Show simple item record

dc.contributor.authorLi, Mingda
dc.contributor.authorCui, Wenping
dc.contributor.authorDresselhaus, Mildred S
dc.contributor.authorChen, Gang
dc.date.accessioned2017-06-16T15:42:31Z
dc.date.available2017-06-16T15:42:31Z
dc.date.issued2017-01
dc.date.submitted2016-12
dc.identifier.issn1367-2630
dc.identifier.urihttp://hdl.handle.net/1721.1/109953
dc.description.abstractCrystal dislocations govern the plastic mechanical properties of materials but also affect the electrical and optical properties. However, a fundamental and quantitative quantum field theory of a dislocation has remained undiscovered for decades. Here we present an exactly-solvable one-dimensional quantum field theory of a dislocation, for both edge and screw dislocations in an isotropic medium, by introducing a new quasiparticle which we have called the ‘dislon’. The electron-dislocation relaxation time can then be studied directly from the electron self-energy calculation, which is reducible to classical results. In addition, we predict that the electron energy will experience an oscillation pattern near a dislocation. Compared with the electron density’s Friedel oscillation, such an oscillation is intrinsically different since it exists even with only single electron is present. With our approach, the effect of dislocations on materials’ non-mechanical properties can be studied at a full quantum field theoretical level.en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Science. Solid-State Solar Thermal Energy Conversion Center (Award DE-SC0001299/DE-FG02-09ER46577)en_US
dc.language.isoen_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/1367-2630/aa5710en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceIOP Publishingen_US
dc.titleElectron energy can oscillate near a crystal dislocationen_US
dc.typeArticleen_US
dc.identifier.citationLi, Mingda et al. “Electron Energy Can Oscillate near a Crystal Dislocation.” New Journal of Physics 19.1 (2017): 013033. © 2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaften_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorChen, Gang
dc.relation.journalNew Journal of Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLi, Mingda; Cui, Wenping; Dresselhaus, Mildred S; Chen, Gangen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3968-8530
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record