Show simple item record

dc.contributor.authorCrutchfield, James P.
dc.contributor.authorMarzen, Sarah E.
dc.date.accessioned2017-06-16T17:49:36Z
dc.date.available2018-02-04T06:00:05Z
dc.date.issued2017-04
dc.identifier.issn0022-4715
dc.identifier.issn1572-9613
dc.identifier.urihttp://hdl.handle.net/1721.1/109960
dc.description.abstractWe introduce the minimal maximally predictive models (ϵ-machines) of processes generated by certain hidden semi-Markov models. Their causal states are either discrete, mixed, or continuous random variables and causal-state transitions are described by partial differential equations. As an application, we present a complete analysis of the ϵ-machines of continuous-time renewal processes. This leads to closed-form expressions for their entropy rate, statistical complexity, excess entropy, and differential information anatomy rates.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Programen_US
dc.description.sponsorshipUniversity of California, Berkeley (Chancellor’s Fellowship)en_US
dc.description.sponsorshipMassachusetts Institute of Technology (Physics of Living Systems Fellowship)en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10955-017-1793-zen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleInformational and Causal Architecture of Continuous-time Renewal Processesen_US
dc.typeArticleen_US
dc.identifier.citationMarzen, Sarah, and James P. Crutchfield. “Informational and Causal Architecture of Continuous-Time Renewal Processes.” Journal of Statistical Physics 168.1 (2017): 109–127.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorMarzen, Sarah E.
dc.relation.journalJournal of Statistical Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-06-07T03:49:56Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsMarzen, Sarah; Crutchfield, James P.en_US
dspace.embargo.termsNen
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record