Show simple item record

dc.contributor.authorHalbertal, D.
dc.contributor.authorCuppens, J.
dc.contributor.authorShalom, M. Ben
dc.contributor.authorEmbon, L.
dc.contributor.authorShadmi, N.
dc.contributor.authorAnahory, Y.
dc.contributor.authorNaren, H. R.
dc.contributor.authorSarkar, J.
dc.contributor.authorUri, A.
dc.contributor.authorRonen, Y.
dc.contributor.authorMyasoedov, Y.
dc.contributor.authorJoselevich, E.
dc.contributor.authorGeim, A. K.
dc.contributor.authorZeldov, E.
dc.contributor.authorLevitov, Leonid
dc.date.accessioned2017-06-16T19:14:31Z
dc.date.available2017-06-16T19:14:31Z
dc.date.issued2016-10
dc.date.submitted2015-11
dc.identifier.issn0028-0836
dc.identifier.issn1476-4687
dc.identifier.urihttp://hdl.handle.net/1721.1/109976
dc.description.abstractEnergy dissipation is a fundamental process governing the dynamics of physical, chemical and biological systems. It is also one of the main characteristics that distinguish quantum from classical phenomena. In particular, in condensed matter physics, scattering mechanisms, loss of quantum information or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Yet the microscopic behaviour of a system is usually not formulated in terms of dissipation because energy dissipation is not a readily measurable quantity on the micrometre scale. Although nanoscale thermometry has gained much recent interest existing thermal imaging methods are not sensitive enough for the study of quantum systems and are also unsuitable for the low-temperature operation that is required. Here we report a nano-thermometer based on a superconducting quantum interference device with a diameter of less than 50 nanometres that resides at the apex of a sharp pipette: it provides scanning cryogenic thermal sensing that is four orders of magnitude more sensitive than previous devices—below 1 μK Hz[superscript −1/2]. This non-contact, non-invasive thermometry allows thermal imaging of very low intensity, nanoscale energy dissipation down to the fundamental Landauer limit of 40 femtowatts for continuous readout of a single qubit at one gigahertz at 4.2 kelvin. These advances enable the observation of changes in dissipation due to single-electron charging of individual quantum dots in carbon nanotubes. They also reveal a dissipation mechanism attributable to resonant localized states in graphene encapsulated within hexagonal boron nitride, opening the door to direct thermal imaging of nanoscale dissipation processes in quantum matter.en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nature19843en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleNanoscale thermal imaging of dissipation in quantum systemsen_US
dc.typeArticleen_US
dc.identifier.citationHalbertal, D.; Cuppens, J.; Shalom, M. Ben; Embon, L.; Shadmi, N.; Anahory, Y. and Naren, H. R. et al. “Nanoscale Thermal Imaging of Dissipation in Quantum Systems.” Nature 539, no. 7629 (October 2016): 407–410 © 2016 Macmillan Publishers Limited, part of Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorLevitov, Leonid
dc.relation.journalNatureen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHalbertal, D.; Cuppens, J.; Shalom, M. Ben; Embon, L.; Shadmi, N.; Anahory, Y.; Naren, H. R.; Sarkar, J.; Uri, A.; Ronen, Y.; Myasoedov, Y.; Levitov, L. S.; Joselevich, E.; Geim, A. K.; Zeldov, E.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4268-731X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record