Show simple item record

dc.contributor.authorCheeger, Jeff
dc.contributor.authorNaber, Aaron Charles
dc.date.accessioned2017-06-19T13:34:38Z
dc.date.available2017-06-19T13:34:38Z
dc.date.issued2012-03
dc.date.submitted2011-04
dc.identifier.issn0020-9910
dc.identifier.issn1432-1297
dc.identifier.urihttp://hdl.handle.net/1721.1/110001
dc.description.abstractLet Yn denote the Gromov-Hausdorff limit M[superscript n][subscript i][d[subscript GH] over ⟶]Y[superscript n] of v-noncollapsed Riemannian manifolds with Ric[subscript M[superscript n][subscript i]] ≥ −(n−1). The singular set S ⊂ Y has a stratification S[superscript 0] ⊂ S[superscript 1] ⊂ ⋯ ⊂ S, where y ∈ S[superscript k] if no tangent cone at y splits off a factor ℝ[superscript k+1] isometrically. Here, we define for all η > 0, 0 < r ≤1, the k-th effective singular stratum S[superscript k][subscript η,r] satisfying ⋃[subscript η]⋂[subscript r]S[superscript k][subscript η,r] = S[superscript k]. Sharpening the known Hausdorff dimension bound dim S[superscript k] ≤ k, we prove that for all y, the volume of the r-tubular neighborhood of S[superscript k][subscript η,r] satisfies Vol(T[subscript r](S[superscript k][subscript η,r])∩B[subscript 1/2](y)) ≤ c(n,v,η)r[superscript n−k−η]. The proof involves a quantitative differentiation argument. This result has applications to Einstein manifolds. Let B[subscript r] denote the set of points at which the C[superscript 2]-harmonic radius is ≤ r. If also the M[superscript n][subscript i] are Kähler-Einstein with L[subscript 2] curvature bound, ∥Rm∥[subscript L2] ≤ C, then Vol(B[subscript r]∩B[subscript 1/2](y)) ≤ c(n,v,C)r[superscript 4] for all y. In the Kähler-Einstein case, without assuming any integral curvature bound on the M[superscript n][subscript i], we obtain a slightly weaker volume bound on B[subscript r] which yields an a priori L[subscript p] curvature bound for all p < 2. The methodology developed in this paper is new and is applicable in many other contexts. These include harmonic maps, minimal hypersurfaces, mean curvature flow and critical sets of solutions to elliptic equations.en_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00222-012-0394-3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer-Verlagen_US
dc.titleLower bounds on Ricci curvature and quantitative behavior of singular setsen_US
dc.typeArticleen_US
dc.identifier.citationCheeger, Jeff, and Aaron Naber. “Lower Bounds on Ricci Curvature and Quantitative Behavior of Singular Sets.” Inventiones mathematicae 191.2 (2013): 321–339.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.mitauthorNaber, Aaron Charles
dc.relation.journalInventiones mathematicaeen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:24:19Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag
dspace.orderedauthorsCheeger, Jeff; Naber, Aaronen_US
dspace.embargo.termsNen
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record