MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Up, down, and strange nucleon axial form factors from lattice QCD

Author(s)
Green, Jeremy; Hasan, Nesreen; Meinel, Stefan; Engelhardt, Michael; Krieg, Stefan; Laeuchli, Jesse; Orginos, Kostas; Syritsyn, Sergey; Pochinsky, Andrew; Negele, John W.; ... Show more Show less
Thumbnail
DownloadPhysRevD.95.114502.pdf (1.391Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We report a calculation of the nucleon axial form factors G[superscript q][superscript A](Q[superscript 2]) and G[superscript q][subscript P](Q[superscript 2]) for all three light quark flavors q ∈ {u,d,s} in the range 0 ≤ Q[superscript 2] ≲ 1.2  GeV[superscript 2] using lattice QCD. This work was done using a single ensemble with pion mass 317 MeV and made use of the hierarchical probing technique to efficiently evaluate the required disconnected loops. We perform nonperturbative renormalization of the axial current, including a nonperturbative treatment of the mixing between light and strange currents due to the singlet-nonsinglet difference caused by the axial anomaly. The form factor shapes are fit using the model-independent z expansion. From G[superscript q][subscript A](Q[superscript 2]), we determine the quark contributions to the nucleon spin and axial radii. By extrapolating the isovector G[superscript u-d][subscript P](Q[superscript 2]), we obtain the induced pseudoscalar coupling relevant for ordinary muon capture and the pion-nucleon coupling constant. We find that the disconnected contributions to G[subscript P] form factors are large, and give an interpretation based on the dominant influence of the pseudoscalar poles in these form factors.
Date issued
2017-06
URI
http://hdl.handle.net/1721.1/110022
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Laboratory for Nuclear Science
Journal
Physical Review D
Publisher
American Physical Society
Citation
Green, Jeremy et al. “Up, Down, and Strange Nucleon Axial Form Factors from Lattice QCD.” Physical Review D 95.11 (2017): n. pag. © 2017 American Physical Society
Version: Final published version
ISSN
2470-0010
2470-0029

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.