Show simple item record

dc.contributor.authorPaynabar, Kamran
dc.contributor.authorRahmandad, Hazhir
dc.contributor.authorJalali, Seyed Mohammad Javad
dc.date.accessioned2017-06-20T14:14:54Z
dc.date.available2017-06-20T14:14:54Z
dc.date.issued2017-04
dc.date.submitted2016-07
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/1721.1/110046
dc.description.abstractRapid growth in scientific output requires methods for quantitative synthesis of prior research, yet current meta-analysis methods limit aggregation to studies with similar designs. Here we describe and validate Generalized Model Aggregation (GMA), which allows researchers to combine prior estimated models of a phenomenon into a quantitative meta-model, while imposing few restrictions on the structure of prior models or on the meta-model. In an empirical validation, building on 27 published equations from 16 studies, GMA provides a predictive equation for Basal Metabolic Rate that outperforms existing models, identifies novel nonlinearities, and estimates biases in various measurement methods. Additional numerical examples demonstrate the ability of GMA to obtain unbiased estimates from potentially mis-specified prior studies. Thus, in various domains, GMA can leverage previous findings to compare alternative theories, advance new models, and assess the reliability of prior studies, extending meta-analysis toolbox to many new problems.en_US
dc.description.sponsorshipUnited States. National Institutes of Health (R21HL113680)en_US
dc.language.isoen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pone.0175111en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourcePLoSen_US
dc.titleA flexible method for aggregation of prior statistical findingsen_US
dc.typeArticleen_US
dc.identifier.citationRahmandad, Hazhir; Jalali, Mohammad S. and Paynabar, Kamran. “A Flexible Method for Aggregation of Prior Statistical Findings.” Edited by Xi Luo. PLOS ONE 12, no. 4 (April 2017): e0175111 © 2017 Rahmandad et alen_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorRahmandad, Hazhir
dc.contributor.mitauthorJalali, Seyed Mohammad Javad
dc.relation.journalPLoS ONEen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRahmandad, Hazhir; Jalali, Mohammad S.; Paynabar, Kamranen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2784-9042
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record