Experience-Dependent Equilibration of AMPAR-Mediated Synaptic Transmission during the Critical Period
Author(s)
Han, Kyung Seok; Cooke, Samuel Frazer; Xu, Weifeng
DownloadHan-2017-Experience-Dependent Equilibration of.pdf (3.184Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Experience-dependent synapse refinement is essential for functional optimization of neural circuits. However, how sensory experience sculpts excitatory synaptic transmission is poorly understood. Here, we show that despite substantial remodeling of synaptic connectivity, AMPAR-mediated synaptic transmission remains at equilibrium during the critical period in the mouse primary visual cortex. The maintenance of this equilibrium requires neurogranin (Ng), a postsynaptic calmodulin-binding protein important for synaptic plasticity. With normal visual experience, loss of Ng decreased AMPAR-positive synapse numbers, prevented AMPAR-silent synapse maturation, and increased spine elimination. Importantly, visual deprivation halted synapse loss caused by loss of Ng, revealing that Ng coordinates experience-dependent AMPAR-silent synapse conversion to AMPAR-active synapses and synapse elimination. Loss of Ng also led to sensitized long-term synaptic depression (LTD) and impaired visually guided behavior. Our synaptic interrogation reveals that experience-dependent coordination of AMPAR-silent synapse conversion and synapse elimination hinges upon Ng-dependent mechanisms for constructive synaptic refinement during the critical period.
Date issued
2017-01Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Picower Institute for Learning and MemoryJournal
Cell Reports
Publisher
Elsevier
Citation
Han, Kyung-Seok, Samuel F. Cooke, and Weifeng Xu. “Experience-Dependent Equilibration of AMPAR-Mediated Synaptic Transmission during the Critical Period.” Cell Reports 18.4 (2017): 892–904.
Version: Final published version
ISSN
22111247