Show simple item record

dc.contributor.authorRomano, Giuseppe
dc.contributor.authorKolpak, Alexie M.
dc.date.accessioned2017-06-20T19:48:44Z
dc.date.available2017-06-20T19:48:44Z
dc.date.issued2017-03
dc.date.submitted2016-10
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/110087
dc.description.abstractBoundary-engineering in nanostructures has the potential to dramatically impact the development of materials for high- efficiency conversion of thermal energy directly into electricity. In particular, nanostructuring of semiconductors can lead to strong suppression of heat transport with little degradation of electrical conductivity. Although this combination of material properties is promising for thermoelectric materials, it remains largely unexplored. In this work, we introduce a novel concept, the directional phonon suppression function, to unravel boundary-dominated heat transport in unprecedented detail. Using a combination of density functional theory and the Boltzmann transport equation, we compute this quantity for nanoporous silicon materials. We first compute the thermal conductivity for the case with aligned circular pores, confirming a significant thermal transport degradation with respect to the bulk. Then, by analyzing the information on the directionality of phonon suppression in this system, we identify a new structure of rectangular pores with the same porosity that enables a four-fold decrease in thermal transport with respect to the circular pores. Our results illustrate the utility of the directional phonon suppression function, enabling new avenues for systematic thermal conductivity minimization and potentially accelerating the engineering of next-generation thermoelectric devices.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (DESC0001)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/srep44379en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleDirectional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materialsen_US
dc.typeArticleen_US
dc.identifier.citationRomano, Giuseppe and Kolpak, Alexie M. “Directional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materials.” Scientific Reports 7 (March 2017): 44379 © 2017 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorRomano, Giuseppe
dc.contributor.mitauthorKolpak, Alexie M.
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRomano, Giuseppe; Kolpak, Alexie M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4347-0139
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record