Show simple item record

dc.contributor.authorZitnay, Jared L.
dc.contributor.authorLi, Yang
dc.contributor.authorSan, Boi Hoa
dc.contributor.authorReese, Shawn P.
dc.contributor.authorYu, S. Michael
dc.contributor.authorWeiss, Jeffrey A.
dc.contributor.authorQin, Zhao
dc.contributor.authorDepalle, Baptiste Pierre Jean
dc.contributor.authorBuehler, Markus J
dc.date.accessioned2017-06-20T20:00:08Z
dc.date.available2017-06-20T20:00:08Z
dc.date.issued2017-03
dc.date.submitted2015-11
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/110088
dc.description.abstractMechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which binds unfolded collagen by triple helix formation, to detect molecular level subfailure damage to collagen in mechanically stretched rat tail tendon fascicle. Our results directly reveal that collagen triple helix unfolding occurs during tensile loading of collagenous tissues and thus is an important damage mechanism. Steered molecular dynamics simulations suggest that a likely mechanism for triple helix unfolding is intermolecular shearing of collagen a-chains. Our results elucidate a probable molecular failure mechanism associated with subfailure injuries, and demonstrate the potential of CHP targeting for diagnosis, treatment and monitoring of tissue disease and injury.en_US
dc.description.sponsorshipUnited States. Office of Naval Research. Presidential Early Career Award for Scientists and Engineers (N000141010562)en_US
dc.description.sponsorshipUnited States. Air Force. Office of Scientific Research (FA95501110199)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (TUFTS-5U01EB014976)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (WUSTL- 5U01EB016422)en_US
dc.description.sponsorshipWellcome Trust (Grant WT097347MA)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms14913en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleMolecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptidesen_US
dc.typeArticleen_US
dc.identifier.citationZitnay, Jared L. et al. “Molecular Level Detection and Localization of Mechanical Damage in Collagen Enabled by Collagen Hybridizing Peptides.” Nature Communications 8 (2017): 14913.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.mitauthorQin, Zhao
dc.contributor.mitauthorDepalle, Baptiste Pierre Jean
dc.contributor.mitauthorBuehler, Markus J
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsZitnay, Jared L.; Li, Yang; Qin, Zhao; San, Boi Hoa; Depalle, Baptiste; Reese, Shawn P.; Buehler, Markus J.; Yu, S. Michael; Weiss, Jeffrey A.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4173-9659
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record