Show simple item record

dc.contributor.authorLiang, Li
dc.contributor.authorOline, Stefan N.
dc.contributor.authorKirk, Justin C.
dc.contributor.authorSchmitt, Lukas Ian
dc.contributor.authorRemondes, Miguel
dc.contributor.authorHalassa, Michael M.
dc.contributor.authorKomorowski, Robert
dc.date.accessioned2017-06-21T13:36:21Z
dc.date.available2017-06-21T13:36:21Z
dc.date.issued2017-02
dc.date.submitted2016-11
dc.identifier.issn1662-5110
dc.identifier.urihttp://hdl.handle.net/1721.1/110100
dc.description.abstractIndependently adjustable multielectrode arrays are routinely used to interrogate neuronal circuit function, enabling chronic in vivo monitoring of neuronal ensembles in freely behaving animals at a single-cell, single spike resolution. Despite the importance of this approach, its widespread use is limited by highly specialized design and fabrication methods. To address this, we have developed a Scalable, Lightweight, Integrated and Quick-to-assemble multielectrode array platform. This platform additionally integrates optical fibers with independently adjustable electrodes to allow simultaneous single unit recordings and circuit-specific optogenetic targeting and/or manipulation. In current designs, the fully assembled platforms are scalable from 2 to 32 microdrives, and yet range 1–3 g, light enough for small animals. Here, we describe the design process starting from intent in computer-aided design, parameter testing through finite element analysis and experimental means, and implementation of various applications across mice and rats. Combined, our methods may expand the utility of multielectrode recordings and their continued integration with other tools enabling functional dissection of intact neural circuits.en_US
dc.description.sponsorshipUnited States. National Institutes of Health (R01MH107680)en_US
dc.description.sponsorshipUnited States. National Institutes of Health (R01NS098505)en_US
dc.description.sponsorshipUnited States. National Institutes of Health (R00NS078115)en_US
dc.language.isoen_US
dc.publisherFrontiers Research Foundationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3389/fncir.2017.00008en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceFrontiersen_US
dc.titleScalable, Lightweight, Integrated and Quick-to-Assemble (SLIQ) Hyperdrives for Functional Circuit Dissectionen_US
dc.typeArticleen_US
dc.identifier.citationLiang, Li; Oline, Stefan N.; Kirk, Justin C.; Schmitt, Lukas Ian; Komorowski, Robert W.; Remondes, Miguel and Halassa, Michael M. “Scalable, Lightweight, Integrated and Quick-to-Assemble (SLIQ) Hyperdrives for Functional Circuit Dissection.” Frontiers in Neural Circuits 11 (February 2017): 8 © 2017 Liang, Oline, Kirk, Schmitt, Komorowski, Remondes and Halassaen_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.mitauthorKomorowski, Robert
dc.relation.journalFrontiers in Neural Circuitsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLiang, Li; Oline, Stefan N.; Kirk, Justin C.; Schmitt, Lukas Ian; Komorowski, Robert W.; Remondes, Miguel; Halassa, Michael M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3079-3772
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record