Show simple item record

dc.contributor.authorFritzsche, M.
dc.contributor.authorLi, D.
dc.contributor.authorColin-York, H.
dc.contributor.authorChang, V. T.
dc.contributor.authorFelce, J. H.
dc.contributor.authorSezgin, E.
dc.contributor.authorCharras, G.
dc.contributor.authorBetzig, E.
dc.contributor.authorEggeling, C.
dc.contributor.authorMoeendarbary, Emadaldin
dc.date.accessioned2017-06-21T14:28:55Z
dc.date.available2017-06-21T14:28:55Z
dc.date.issued2017-02
dc.date.submitted2016-12
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/110109
dc.description.abstractCell-free studies have demonstrated how collective action of actin-associated proteins can organize actin filaments into dynamic patterns, such as vortices, asters and stars. Using complementary microscopic techniques, we here show evidence of such self-organization of the actin cortex in living HeLa cells. During cell adhesion, an active multistage process naturally leads to pattern transitions from actin vortices over stars into asters. This process is primarily driven by Arp2/3 complex nucleation, but not by myosin motors, which is in contrast to what has been theoretically predicted and observed in vitro. Concomitant measurements of mechanics and plasma membrane fluidity demonstrate that changes in actin patterning alter membrane architecture but occur functionally independent of macroscopic cortex elasticity. Consequently, tuning the activity of the Arp2/3 complex to alter filament assembly may thus be a mechanism allowing cells to adjust their membrane architecture without affecting their macroscopic mechanical properties.en_US
dc.description.sponsorshipWellcome Trust (WT103883)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms14347en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleSelf-organizing actin patterns shape membrane architecture but not cell mechanicsen_US
dc.typeArticleen_US
dc.identifier.citationFritzsche, M.; Li, D.; Colin-York, H.; Chang, V. T.; Moeendarbary, E.; Felce, J. H.; Sezgin, E.; Charras, G.; Betzig, E. and Eggeling, C. “Self-Organizing Actin Patterns Shape Membrane Architecture but Not Cell Mechanics.” Nature Communications 8 (February 2017): 14347 © 2017 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.mitauthorMoeendarbary, Emadaldin
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFritzsche, M.; Li, D.; Colin-York, H.; Chang, V. T.; Moeendarbary, E.; Felce, J. H.; Sezgin, E.; Charras, G.; Betzig, E.; Eggeling, C.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7019-3907
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record