Show simple item record

dc.contributor.authorSutton, Amy
dc.contributor.authorShirman, Tanya
dc.contributor.authorTimonen, Jaakko V. I.
dc.contributor.authorEngland, Grant T
dc.contributor.authorKim, Philseok
dc.contributor.authorKolle, Mathias
dc.contributor.authorFerrante, Thomas
dc.contributor.authorZarzar, Lauren D
dc.contributor.authorStrong, Elizabeth
dc.contributor.authorAizenberg, Joanna
dc.date.accessioned2017-06-21T15:47:40Z
dc.date.available2017-06-21T15:47:40Z
dc.date.issued2017-03
dc.date.submitted2016-04
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/110124
dc.description.abstractMechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.en_US
dc.description.sponsorshipUnited States. Department of Energy (DE-SC0005247)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N00014-15-1-2157)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms14700en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titlePhotothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulationen_US
dc.typeArticleen_US
dc.identifier.citationSutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D; Strong, Elizabeth and Aizenberg, Joanna. “Photothermally Triggered Actuation of Hybrid Materials as a New Platform for in Vitro Cell Manipulation.” Nature Communications 8 (March 2017): 14700 © 2017 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorKolle, Mathias
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D; Strong, Elizabeth; Aizenberg, Joannaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7395-8824
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record