Show simple item record

dc.contributor.authorOoi, K. J. A.
dc.contributor.authorNg, D. K. T.
dc.contributor.authorWang, T.
dc.contributor.authorChee, A. K. L.
dc.contributor.authorNg, S. K.
dc.contributor.authorWang, Q.
dc.contributor.authorAng, L. K.
dc.contributor.authorTan, D. T. H.
dc.contributor.authorAgarwal, Anuradha
dc.contributor.authorKimerling, Lionel C
dc.date.accessioned2017-06-21T17:54:15Z
dc.date.available2017-06-21T17:54:15Z
dc.date.issued2017-01
dc.date.submitted2016-08
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/110129
dc.description.abstractCMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has led to our development of USRN (ultra-silicon-rich nitride) in the form of Si[subscript 7]N[subscript 3], that possesses a high Kerr nonlinearity (2.8 × 10[superscript −13] cm[superscript 2] W[superscript −1]), an order of magnitude larger than that in stoichiometric silicon nitride. Here we experimentally demonstrate high-gain optical parametric amplification using USRN, which is compositionally tailored such that the 1,550 nm wavelength resides above the two-photon absorption edge, while still possessing large nonlinearities. Optical parametric gain of 42.5 dB, as well as cascaded four-wave mixing with gain down to the third idler is observed and attributed to the high photon efficiency achieved through operating above the two-photon absorption edge, representing one of the largest optical parametric gains to date on a CMOS platform.en_US
dc.description.sponsorshipSingapore Ministry of Education. Academic Research Fund (AcRF) Tier 2 granten_US
dc.description.sponsorshipSingapore. Agency for Science, Technology and Research (PSF grant)en_US
dc.description.sponsorshipSUTD-MIT International Design Centre (IDC)en_US
dc.description.sponsorshipTemasek Laboratoriesen_US
dc.description.sponsorshipNational Research Foundation of Singapore (Medium Sized Centre Program)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms13878en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titlePushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edgeen_US
dc.typeArticleen_US
dc.identifier.citationOoi, K. J. A., D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan. “Pushing the Limits of CMOS Optical Parametric Amplifiers with USRN:Si7N3 Above the Two-Photon Absorption Edge.” Nature Communications 8 (January 4, 2017): 13878.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Materials Processing Centeren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Microphotonics Centeren_US
dc.contributor.mitauthorAgarwal, Anuradha
dc.contributor.mitauthorKimerling, Lionel C
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsOoi, K. J. A.; Ng, D. K. T.; Wang, T.; Chee, A. K. L.; Ng, S. K.; Wang, Q.; Ang, L. K.; Agarwal, A. M.; Kimerling, L. C.; Tan, D. T. H.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3913-6189
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record