MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiplicative functionals on ensembles of non-intersecting paths

Author(s)
Borodin, Alexei; Corwin, Ivan; Remenik, Daniel
Thumbnail
DownloadBorodin_Multiplicative functionals.pdf (354.3Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The purpose of this article is to develop a theory behind the occurrence of “path-integral” kernels in the study of extended determinantal point processes and non-intersecting line ensembles. Our first result shows how determinants involving such kernels arise naturally in studying ratios of partition functions and expectations of multiplicative functionals for ensembles of non-intersecting paths on weighted graphs. Our second result shows how Fredholm determinants with extended kernels (as arise in the study of extended determinantal point processes such as the Airy[subscript 2] process) are equal to Fredholm determinants with path-integral kernels. We also show how the second result applies to a number of examples including the stationary (GUE) Dyson Brownian motion, the Airy[subscript 2] process, the Pearcey process, the Airy[subscript 1] and Airy[subscript 2→1] processes, and Markov processes on partitions related to the zz-measures.
Date issued
2015-02
URI
http://hdl.handle.net/1721.1/110173
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Annales de l Institut Henri Poincaré Probabilités et Statistiques
Publisher
Institute of Mathematical Statistics
Citation
Borodin, Alexei, Ivan Corwin, and Daniel Remenik. “Multiplicative Functionals on Ensembles of Non-Intersecting Paths.” Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 51, no. 1 (February 2015): 28–58. © 2015 Association des Publications de l’Institut Henri Poincaré
Version: Original manuscript
ISSN
0246-0203

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.