Show simple item record

dc.contributor.authorLoh, Po-Ru
dc.contributor.authorBulik-Sullivan, Brendan K
dc.contributor.authorVilhjálmsson, Bjarni J
dc.contributor.authorSalem, Rany M
dc.contributor.authorChasman, Daniel I
dc.contributor.authorRidker, Paul M
dc.contributor.authorNeale, Benjamin M
dc.contributor.authorPatterson, Nick
dc.contributor.authorPrice, Alkes L
dc.contributor.authorTucker, George Jay
dc.contributor.authorFinucane, Hilary Kiyo
dc.contributor.authorBerger Leighton, Bonnie
dc.date.accessioned2017-06-22T21:32:59Z
dc.date.available2017-06-22T21:32:59Z
dc.date.issued2015-03
dc.date.submitted2014-07
dc.identifier.issn1061-4036
dc.identifier.issn1546-1718
dc.identifier.urihttp://hdl.handle.net/1721.1/110185
dc.description.abstractLinear mixed models are a powerful statistical tool for identifying genetic associations and avoiding confounding. However, existing methods are computationally intractable in large cohorts and may not optimize power. All existing methods require time cost O(MN2) (where N is the number of samples and M is the number of SNPs) and implicitly assume an infinitesimal genetic architecture in which effect sizes are normally distributed, which can limit power. Here we present a far more efficient mixed-model association method, BOLT-LMM, which requires only a small number of O(MN) time iterations and increases power by modeling more realistic, non-infinitesimal genetic architectures via a Bayesian mixture prior on marker effect sizes. We applied BOLT-LMM to 9 quantitative traits in 23,294 samples from the Women's Genome Health Study (WGHS) and observed significant increases in power, consistent with simulations. Theory and simulations show that the boost in power increases with cohort size, making BOLT-LMM appealing for genome-wide association studies in large cohorts.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant R01 HG006399)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (fellowship F32 HG007805)en_US
dc.description.sponsorshipHertz Foundationen_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ng.3190en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleEfficient Bayesian mixed-model analysis increases association power in large cohortsen_US
dc.typeArticleen_US
dc.identifier.citationLoh, Po-Ru, George Tucker, Brendan K Bulik-Sullivan, Bjarni J Vilhjálmsson, Hilary K Finucane, Rany M Salem, Daniel I Chasman, et al. “Efficient Bayesian Mixed-Model Analysis Increases Association Power in Large Cohorts.” Nat Genet 47, no. 3 (February 2, 2015): 284–290. © 2015 Nature America, Inc.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorTucker, George Jay
dc.contributor.mitauthorFinucane, Hilary Kiyo
dc.contributor.mitauthorBerger Leighton, Bonnie
dc.relation.journalNature Geneticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLoh, Po-Ru; Tucker, George; Bulik-Sullivan, Brendan K; Vilhjálmsson, Bjarni J; Finucane, Hilary K; Salem, Rany M; Chasman, Daniel I; Ridker, Paul M; Neale, Benjamin M; Berger, Bonnie; Patterson, Nick; Price, Alkes Len_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3864-9828
dc.identifier.orcidhttps://orcid.org/0000-0002-2724-7228
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record