Show simple item record

dc.contributor.authorMirkovic, Ivan
dc.contributor.authorAnno, Irina
dc.contributor.authorBezrukavnikov, Roman
dc.date.accessioned2017-06-23T13:33:15Z
dc.date.available2017-06-23T13:33:15Z
dc.date.issued2015-04
dc.identifier.issn1609-4514
dc.identifier.issn1609-3321
dc.identifier.urihttp://hdl.handle.net/1721.1/110198
dc.description.abstractThe paper provides new examples of an explicit submanifold in Bridgeland stabilities space of a local Calabi-Yau. More precisely, let X be the standard resolution of a transversal slice to an adjoint nilpotent orbit of a simple Lie algebra over C. An action of the affine braid group on the derived category D[superscript b] (Coh(X)) and a collection of t-structures on this category permuted by the action have been constructed in [BR] and [BM] respectively. In this note we show that the t-structures come from points in a certain connected submanifold in the space of Bridgeland stability conditions. The submanifold is a covering of a submanifold in the dual space to the Grothendieck group, and the affine braid group acts by deck transformations. We also propose a new variant of definition of stabilities on a triangulated category, which we call a ”real variation of stability conditions” and discuss its relation to Bridgeland’s definition. The main theorem provides an illustration of such a relation. We state a conjecture by the second author and A. Okounkov on examples of this structure arising from symplectic resolutions of singularities and its relation to equivariant quantum cohomology. We verify this conjecture in our examples.en_US
dc.language.isoen_US
dc.publisherIndependent University of Moscowen_US
dc.relation.isversionofhttp://www.mathjournals.org/mmj/2015-015-002/2015-015-002-002.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleStability Conditions for Slodowy Slices and Real Variations of Stabilityen_US
dc.typeArticleen_US
dc.identifier.citationAnno, Rino, Roman Bezrukavnikov, and Ivan Mirković. "Stability Conditions for Slodowy Slices and Real Variations of Stability." Moscow Mathematical Journal 15.2 (2015) 187–203.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorAnno, Irina
dc.contributor.mitauthorBezrukavnikov, Roman
dc.relation.journalMoscow Mathematical Journalen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAnno, Rina; Bezrukavnikov, Roman; Mirkovic, Ivanen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5902-8989
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record