EKR Sets for Large n and r
Author(s)
Bond, Benjamin; Bond, Benjamin R.
Download373_2015_1602_ReferencePDF.pdf (226.4Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Let A⊂([n]r) be a compressed, intersecting family and let X⊂[n]. Let A(X)={A∈A:A∩X≠∅} and Sn,r=([n]r)({1}). Motivated by the Erdős–Ko–Rado theorem, Borg asked for which X⊂[2,n] do we have |A(X)|≤|Sn,r(X)| for all compressed, intersecting families A? We call X that satisfy this property EKR. Borg classified EKR sets X such that |X|≥r. Barber classified X, with |X|≤r, such that X is EKR for sufficiently large n, and asked how large n must be. We prove n is sufficiently large when n grows quadratically in r. In the case where A has a maximal element, we sharpen this bound to n>φ2r implies |A(X)|≤|Sn,r(X)|. We conclude by giving a generating function that speeds up computation of |A(X)| in comparison with the naïve methods.
Date issued
2015-08Department
Massachusetts Institute of Technology. Department of MathematicsJournal
Graphs and Combinatorics
Publisher
Springer Japan
Citation
Bond, Benjamin. "EKR Sets for Large n and r." Graphs and Combinatorics (2016) 32: 495-510.
Version: Author's final manuscript
ISSN
0911-0119
1435-5914